Skip to main content

Table 5 Pearson’s r correlation matrix for outcome variables in the intervention group

From: Does improvement towards a normal cervical sagittal configuration aid in the management of cervical myofascial pain syndrome: a 1- year randomized controlled trial

  Δ cervical angle 0-10w Δ cervical angle 10-1Y Δ shoulder angle 0-10w Δ shoulder angle 10w -1Y
Δ pain 0-10 W −.2
P = .05
  −.2
P = .015
 
Δ pain 10 W-1Y   −.1
P = .2
  −.05
P = .3
Δ NDI 0-10w −.24
P = .032
  −.11
P = .196
 
Δ NDI 10 w-1Y   .2
P = .0
  .07
P = .2
Δ algometric 0–10 w .24
P = .033
  .29
P = .012
 
Δ algometric 10w-1 Y   −.027
P = .4
  −.002
P = .4
ROM flexion 0–10 w .2
P = .028
  .15
P = .1
 
ROM flexion 10w-1 Y   −.16
P = .1
  −.007
P = .4
ΔROM extension 0–10 w .34
P = .003
  −.06
P = .3
 
ΔROM extension 10w-1 Y   .06
P = .3
  .053
P = .3
ΔROM RT rotation 0–10 w .25
P = .026
  .14
P = .1
 
ΔROM RT rotation 10w-1 Y   −.11
P = .1
  .033
P = .4
ΔROM left rotation 0–10 w .4
P = .036
  .03
P = .4
 
ΔROM rotation lt 10w-1 Y   −.1
P = .1
  .013
P = .4
ΔROM RT lateral flex 0–10 w .2
P = .020
  .12
P = .1
 
ΔROM RT lateral flex 10w-1 Y   .14
P = .1
  
ΔROM left lateral flex 0–10 w .2
P = .021
  .05
P = .3
 
ΔROM left lateral flex 10w-1 Y   .04
P = .3
  −.1
P = .2