Skip to main content

Table 2 Strength of association (odds ratios, 95% CI), goodness-of-fit statistics and discrimination (c-statistic) for prediction models using baseline pain only, short-term change, or repeat score at repeat assessment (long-term disability improvement as outcome)

From: Brief pain re-assessment provided more accurate prognosis than baseline information for low-back or shoulder pain

Study Author Prediction model OR (95% CI) Goodness-of-fit statistics c-statistic (95% CI) Comparison of c-statistics
(p-value)
Hosmer & Lemeshow test Nagelkerke pseudo R square
Dunn & Croft [22]
LBP, RMDQ outcome
Baseline Pain Score (0–10)
(n = 430)
0.94 (0.88 to 1.01) X 2 (7) = 8.18, p = 0.32 0.01 0.55 (0.49 to 0.60) Baseline vs. 4w pain, p < 0.001*
Baseline vs. Change, p = 0.24
Change vs. 4w pain, p = 0.06
4w** Change in Pain
(n = 332)
1.21 (1.10 to 1.33)* X 2 (6) = 4.85, p = 0.56 0.07 0.62 (0.56 to 0.68)
4w Pain Score
(n = 334)
0.78 (0.72 to 0.85)* X 2 (7) = 13.48, p = 0.06 0.13 0.68 (0.63 to 0.74)
Kuijpers et al. [20]
Shoulder pain, SDQ outcome
Baseline Pain Score (0–10)
(n = 586)
0.92 (0.85 to 0.98)* X 2 (6) = 6.10, p = 0.41 0.01 0.56 (0.51 to 0.61) Baseline vs. 6w pain, p <0.001*
Baseline vs. Change, p = 0.30
Change vs. 6w pain, p = 0.02*
6w Change in Pain
(n = 477)
1.17 (1.09 to 1.26)* X 2 (7) = 5.09, p = 0.65 0.05 0.61 (0.56 to 0.67)
6w Pain Score
(n = 478)
0.78 (0.72 to 0.85)* X 2 (6) = 3.68, p = 0.72 0.11 0.67 (0.62 to 0.72)
Swinkels-Meewisse et al. [23]
LBP, RMDQ outcome
Baseline Pain Score (0–10)
(n = 300)
0.99 (0.98 to 1.01) X 2 (8) = 6.99, p = 0.54 0.01 0.56 (0.47 to 0.64) Baseline vs. 6w pain, p <0.001*
Baseline vs. Change, p = 0.03*
Change vs. 6w pain, p = 0.09
6w Change in Pain
(n = 279)
1.03 (1.02 to 1.04)* X 2 (8) = 11.20, p = 0.19 0.13 0.71 (0.63 to 0.79)
6w Pain Score
(n = 281)
0.97 (0.95 to 0.98)* X 2 (8) = 6.25, p = 0.62 0.20 0.77 (0.70 to 0.84)
van der Windt et al. [19]
Shoulder pain, SDQ outcome
Baseline Pain Score (0–10)
(n = 293)
0.83 (0.74 to 0.94)* X 2 (5) = 5.24, p = 0.39 0.05 0.62 (0.55 to 0.69) Baseline vs. 4w pain, p = 0.44
Baseline vs. Change, p = 0.22
Change vs. 4w pain, p <0.001*
4w Change in Pain
(n = 280)
1.07 (0.97 to 1.16) X 2 (7) = 7.04, p = 0.43 0.01 0.55 (0.48 to 0.63)
4w Pain Score
(n = 287)
0.83 (0.75 to 0.91)* X 2 (6) = 3.50, p = 0.74 0.08 0.65 (0.58 to 0.72)
  1. *p < 0.05; **change calculated as baseline minus 4w score; therefore an OR > 1 indicates a larger probability of long-term improvement and an OR < 1 indicates a smaller probability of improvement