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Abstract

Background: Mouse and human skeletal muscle transcriptome profiles vary by muscle type,
raising the question of which mouse muscle groups have the greatest molecular similarities to
human skeletal muscle.

Methods: Orthologous (whole, sub-) transcriptome profiles were compared among four mouse-
human transcriptome datasets: (M) six muscle groups obtained from three mouse strains (wildtype,
mdx, mdx><); (HI) biopsied human quadriceps from controls and Duchenne muscular dystrophy
patients; (H2) four different control human muscle types obtained at autopsy; and (H3) 12 different
control human tissues (ten non-muscle).

Results: Of the six mouse muscles examined, mouse soleus bore the greatest molecular
similarities to human skeletal muscles, independent of the latters' anatomic location/muscle type,
disease state, age and sampling method (autopsy versus biopsy). Significant similarity to any one
mouse muscle group was not observed for non-muscle human tissues (dataset H3), indicating this
finding to be muscle specific.

Conclusion: This observation may be partly explained by the higher type | fiber content of soleus
relative to the other mouse muscles sampled.

cle degeneration than DMD patients [3,5,6]. Conse-
quently, extrapolating findings from a mouse model to
human disease can have limitations.

Background

Animal models of human diseases are used extensively to
study basic disease processes and test potential therapies.
Even though these proxies have ethical and practical

advantages, they generally do not completely recapitulate
the human disease phenotype. For example, mdx and
mdx>» mice have mutations in the dystrophin gene mir-
roring the genetic defect of human Duchenne muscular
dystrophy (DMD) [1-4], yet they experience milder mus-

Different skeletal muscle groups are dissimilarly affected
in muscular dystrophies, suggesting inherent molecular
and physiological differences among muscle groups. This
raises the question of whether one type of mouse muscle
more accurately represents particular (myopathic) charac-
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teristics in a given human muscle type than another.
Based on gross histology, skeletal muscles differ in at least
four parameters: bulk, length, fiber architecture and fiber
type proportions. It is not immediately clear how to prior-
itize these for cross species comparisons. Recent transcrip-
tome studies of different skeletal muscle groups in
humans [7-10] and mice [11-16] raise the related ques-
tion of whether and how muscle groups are related from
a molecular perspective, within and across species.

This study investigates the similarities between mouse and
human skeletal muscle gene expression profiles at the
level of the whole transcriptome and four distinct sub-
transcriptomes. Of the six mouse muscle groups consid-
ered, soleus was found to be most similar to all human
muscles tested, independent of the latters' anatomic loca-
tion/muscle type, disease state, age, and sampling method
(autopsy versus biopsy). These observations were consist-
ent regardless of the sub-transcriptome used to character-
ize each sample profile.

Methods

Transcriptome datasets (M, HI, H2, H3)

The gene expression datasets originate from four separate,
previously-published skeletal muscle studies (one on
mouse and three on humans) performed on the Affyme-
trix GeneChip platform (Table).

Dataset M (mouse, n = 36) was derived from six different
skeletal muscle groups: diaphragm, extensor digitorum
longus, gastrocnemius, quadricep, soleus, and tibialis
anterior of eight-week-old male mice. The mice repre-
sented three genetic strains: wildtype (C57BL/10Sn]J), mdx
(C57BL/10ScSn-Dmdmd¥/J), and mdx5 (B6Ros.Cg-Dmd-
mdx-5cv) with their transcriptome profiles assayed in dupli-
cate on the Affymetrix U74Av2 platform [17,18].

Dataset H1 (human, n = 24) consists of transcriptome
profiles of surgically-biopsied quadriceps from 12 control
and 12 DMD subjects assayed on the Affymetrix U95Av2
platform [8,19].

Dataset H2 (human, n = 32) contains transcriptome pro-
files of four different human muscle groups: deltoid, gas-
trocnemius, quadriceps, and tibialis anterior obtained at
autopsy from each of 8 individuals - three pediatric and
five geriatric — assayed on the Affymetrix U133A platform
[20].

Dataset H3 (human, n = 24) contains transcriptome pro-
files of 12 distinct normal organ-tissues pooled from 10-
25 individuals - bone marrow, brain, heart, liver, lung,
kidney, skeletal muscle, pancreas, prostate, spinal cord,
spleen, and thymus - assayed on the Affymetrix U95Av2
microarrays in duplicate [21,22].

http://www.biomedcentral.com/1471-2474/7/23

Mouse-human gene orthologues

Curated and predicted National Center for Biotechnology
Information (NCBI) Entrez-identified mouse-human
orthologue gene pairs were obtained from NCBI Homol-
oGene, (data freeze October 07, 2005) [23]. To ensure a
one-to-one and well-defined mapping, cross-species
matches were restricted to those with the highest recipro-
cal percentage sequence homology. For instance, the
human gene ACAT2 (EntrezID 39) has two distinct mouse
orthologues: Acat2 (87.12% sequence homology, Ent-
rezID 110460) and Acat3 (85.10% sequence homology,
EntrezID 224530). Acat2 was considered the human
ACAT2's unique mouse-orthologue since it had the higher
percentage homology with ACAT2.

The Affymetrix GeneChip platforms contain the following
number of Entrez-identified genes (data freeze May 17,
2005): U74Av2, 8,894 mouse genes; U95Av2, 8,978
human genes; U133A, 12,963 human genes. Between the
mouse U74Av2 and human U95Av?2 platforms, there exist
5,306 mouse-human orthologue pairs. Similarly, mouse
U74Av2 and human U133A platforms have 6,547 ortho-
logue pairs.

Mathematical analyses

The primary gene set for cross-species analyses are the
5,306 orthologue gene pairs between the mouse Affyme-
trix U74Av2 (dataset M) and human Affymetrix U95Av2
(dataset H1 and H3) platforms. Of these 5,306 genes,
5,288 (99.7%) are shared in common with the 6,547
U74Av2/U133A orthologue pairs, and were thus used in
cross-species analyses between datasets M and H2
(Affymetrix U133A). Each sample gene expression profile
is represented as algebraic N-vector signifying the reported
expression intensities for N (>0) distinct genes measured
in that sample.

Principal component analysis (PCA) was used to obtain
the subsets of genes that were dominant contributors to
the global sample variation in datasets M and H1, respec-
tively [see Additional file 1] [see Additional file 2] [see
Additional file 3] [24-27]. We define the g/'s with |q;| >
0.03 in any one of principal components 1-3 (PC1-3) fol-
lowing PCA of datasets M (271 genes) and H1 (234 genes)
to be the dominant contributors to global sample varia-
tion for datasets M and H1 respectively. Eighty-six genes
are common to both sets.

Linear (Pearson) correlation was used to quantify the lin-
ear similarity between mouse and human samples [24].
Each mouse or human sample is a gene expression profile
vector of length N, with the jth mouse vector component
being orthologous to the jth human vector component.
When calculating the mouse-human profile correlations
at the whole transcriptome-scale, N = 5,306, the total
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number of orthologue gene pairs between the mouse
U74Av2-human U95Av2 platforms; and N = 234 (respec-
tively, N = 271 - see preceding paragraph) when calculat-
ing the mouse-human profile correlations based on the
subset of genes that are dominant contributors to global
sample variance in dataset H1 (respectively, dataset M).

The non-parametric Wilcoxon (Mann-Whitney) rank-sum
test [28] was used to assess the probability that the distri-
bution of linear correlations of human skeletal muscle to
mouse soleus is similar to the distribution of linear corre-
lations of human skeletal muscle to mouse non-soleus
muscles. The underlying expression data distributions
were non-Gaussian, thus a parametric test was not used.

Results

Whole transcriptome scale correlations between mouse
and human skeletal muscles

Whole transcriptome scale (5,306-gene profile) similari-
ties between skeletal muscle datasets M (mouse) and H1
(human) were investigated. Linear correlation was used as
a measure of similarity. Two additional human transcrip-
tome datasets were considered as in silico positive con-
trols: (H2) transcriptome profiles from four skeletal
muscle groups of eight human subjects from autopsies
measured on the Affymetrix U133A platform [20]; and
(H3) transcriptome profiles from 12 distinct human tis-
sues (two muscle, ten non-muscle) [21] measured on the
same microarray platform as H1.

Linear correlations between 5,306-gene transcriptome
profiles of each sample from dataset M to each sample
from dataset H1 were computed. The human correlation
group averages and standard deviations relative to each of
the six mouse muscle groups x three genetic strains are
shown in Figure 1A-B. All 24 human quadriceps samples
had a significantly higher correlation to mouse soleus
than to non-soleus mouse muscles (p < 0.02, Wilcoxon),
independent of mouse genetic background and human
myopathic condition.

To determine whether the higher correlation of human
quadriceps to mouse soleus could be reproduced with
other human muscles, similar correlation analyses were
performed with human datasets H2 and H3 relative to
dataset M. Cross-species linear correlation analyses of the
5,288-gene pairs selected between datasets M and H2
showed a significantly higher correlation in 28 of the 32
human samples to mouse soleus (p < 0.02, Wilcoxon)
than to non-soleus mouse muscles (Figure 1C-D).

To determine whether the higher correlation of human
skeletal muscles to mouse soleus is specific to muscle tis-
sue, similar correlation analyses were performed with the
5,306-gene transcriptome profiles of human tissue not

http://www.biomedcentral.com/1471-2474/7/23

primarily composed of muscle (bone marrow, brain, liver,
lung, kidney, pancreas, prostate, spinal cord, spleen and
thymus) in dataset H3 relative to dataset M. The non-mus-
cle human profiles did not return a significantly higher
correlation to any mouse muscle, whereas the pooled
human heart and skeletal muscle profiles in dataset H3
showed a significantly higher correlation to the mouse
soleus than to non-soleus mouse muscles (p < 0.02, Wil-
coxon) (Figures 1A, 1C). Indeed, non-muscle human tis-
sue-to-mouse muscle correlations were significantly lower
than human muscle-to-mouse muscle correlations.

Sub-transcriptome scale correlations between mouse and

human skeletal muscles

We identified candidate subsets of genes (by their onto-
logic category or contribution to sample variation in silico)
that might underwrite the transcriptomic resemblance of
human muscle to mouse soleus. Correlation analyses of
mouse-human sample profiles were performed as above,
relative to four subsets of the 5,306-gene whole transcrip-
tome separately: ST1, the 733-gene sub-transcriptome
(13.8% of the whole transcriptome) recorded by the Gene
Ontology Consortium [29] to be integral to cell plasma
membrane - note that dystrophin and other sarcolemma-
related structural proteins involved in myopathies belong
to this ontologic category; ST2, the 271-gene sub-tran-
scriptome (5.1% of the whole transcriptome) of domi-
nant contributors to global sample variance in dataset M;
ST3, the 234-gene sub-transcriptome (4.4% of the whole
transcriptome) of dominant contributors to global sam-
ple variance in dataset H1; and ST4, the 4,188-gene sub-
transcriptome complement to ST1-3 as a negative in silico
control - these are genes neither integral to the cell plasma
membrane nor dominant contributors to global sample
variance in the muscle datasets M and H1. Twenty-one
genes in ST2, and 16 in ST3, belong to the cell plasma
membrane category/ST1.

Using ST1-3 to characterize sample profiles, we again
observed significantly higher correlations of human mus-
cles in datasets H1-3 to mouse soleus than to non-soleus
mouse muscles (p < 0.02, Wilcoxon) [see Additional file
4] [see Additional file 5] [see Additional file 6]. Similarly,
correlations of non-muscle human tissue in dataset H3 to
mouse dataset M are lower and do not show a signifi-
cantly higher correlation to any mouse muscle group -
with one exception in the ST3 sample profile characteriza-
tion where among non-muscle human tissue, brain and
spinal cord had significantly higher correlation with
mouse soleus than with non-soleus muscle profiles. In
contrast, when ST4 was used to characterize sample pro-
files, all human muscle and non-muscle samples from
dataset H1-3 have lower correlations to mouse muscle
profiles in dataset M compared to their ST1-3 sample pro-
file characterization, and human muscle profiles show no
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Figure 1 Whole transcriptome 5,306-gene correlations
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Correlations of human transcriptome profiles relative to homologous mouse muscle profiles. All samples are characterized by
their 5,306-gene whole transcriptome profile. (A) Human linear correlation group averages + one standard deviation error
bars relative to each of the six mouse muscle groups x three genetic strains from dataset M. The five human groups are color
coded: control (green) and DMD (magenta) quadriceps from dataset HI, pooled skeletal muscle (light gray), heart (dark gray),
and tissue not primarily composed of muscle (black) from dataset H3. (B) For each human sample, the likelihood (Wilcoxon
rank-sum) that there is no difference in the human sample's correlations to soleus versus to non-soleus mouse muscle profiles
is shown. (C, D) Similar to (A, B) except that relative to dataset M, the human samples compared are four different skeletal
muscle groups from each of eight normal subject autopsies of dataset H2, forming two color-coded groups: pediatric (light
blue) and older (dark blue) samples. Among mouse muscles, human muscle sample groups were consistently most correlated

with the mouse soleus.

significant correlation to any mouse muscle group (Figure
2).

Differential correlations of normal versus DMD human
quadriceps to normal mouse skeletal muscle
transcriptomes

We investigated whether the myopathic state (specifically
DMD) of a human muscle (specifically quadriceps in

dataset H1) was reflected in its correlation against
wildtype mouse skeletal muscle groups (dataset M).

Mouse-human correlation analyses were performed
between datasets M and H1, relative to the above sample
profile characterizations: whole transcriptome and sub-
transcriptomes ST1-4. In all except the ST4 characteriza-
tion, control human quadriceps to wildtype mouse mus-
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Figure 2 4,188-gene sub-transcriptome ST4 (complement to ST1-3) correlations
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Analogous to Figure |, correlations of human gene expression profiles relative to homologous mouse muscle profiles, except
that samples are characterized as a 4,188-gene profile (ST4) of genes complementary to sub-transcriptomes ST1-3. This is a
negative control comparison. Note that human muscle group profiles were not more correlated to any one particular mouse

muscle.

cle correlations were significantly higher than DMD
human quadriceps to wildtype mouse muscle correlations
(p < 0.02, Wilcoxon) (Figure 3).

Discussion

All human skeletal muscle samples tested were found to
be significantly more correlated to mouse soleus than to
the other five non-soleus mouse skeletal muscle groups,
independent of the human samples' anatomic location/
muscle type, disease state, age and sampling method
(autopsy versus biopsy). This observation was both spe-
cific to muscle tissue, and consistent even when distinct
sub-transcriptomes were used to characterize the mouse-
human sample profiles. These in silico transcriptome sim-
ilarities might reflect common/analogous molecular hier-
archies modulating these system biologies. From a

practical perspective, the approach taken here can be
extended to assessing general animal models of human
systems in silico.

Mouse soleus bears a greater molecular resemblance to
several human skeletal muscle types under different con-
ditions (autopsy and biopsy sampling, disease and con-
trol) than the other five mouse muscles examined. This
suggests that mouse soleus may be one of the better repre-
sentations of human muscle disease among mouse mus-
cles, to study both disease processes and potential
therapies. Besides having a molecular profile that is dis-
tinct from the other five mouse skeletal muscle groups
[17], soleus also displays histological differences. Soleus
has 58% type I fibers, whereas the other muscles have
lower type I percentages: extensor digitorum longus and
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Figure 3 Correlations (12 Human Control, mouse muscle) versus Correlations (12 Human DMD, mouse muscle) for each mouse muscle,
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Difference in correlations of control human quadriceps to each mouse skeletal muscle group, and correlations of DMD human
quadriceps to each mouse skeletal muscle group — relative to five different sub-transcriptome sample profile characterizations.
In other words, A(Corr(control human quadriceps, mouse muscle), Corr(DMD human quadriceps, mouse muscle)). A Wil-
coxon rank-sum test was used to assess the likelihood of non-difference in these correlations. In all but the ST4 (negative con-
trol) sample profile characterization, mouse wildtype muscles were more correlated to control (Con) than to DMD human

quadriceps.

tibalis anterior 0%, gastrocnemius 1-8%, quadriceps 0-
45%, diaphragm 10-12% [30-33]. Like mouse soleus, the
human autopsy samples examined had a balance of fiber
types I and II [20], raising the question of whether the
molecular resemblances derive primarily from similarities
in fiber type proportions. If this were the case, the genes
that most distinguish mouse soleus from other mouse
muscles, and most represent its similarities to human
muscles, should include a significant number of fiber type
specific genes. Consistent with this interpretation, we find
that among the ten genes with the highest positive loading
in PC2 (the axis of greatest variation between mouse
soleus versus other muscle groups) for dataset M, six are
differentially expressed between fiber types (rank in

parentheses): Myl3 (#2) [34], Tnnil (#3) [35], Myl2 (#4)
[36], Tnncl (#5) [37], MDb (#7) [38], and Tnnt (#9) [39].
Two of the others, Atp2a2 (#6) [40] and Idh2 (#10),[41]
are involved in energy metabolism and may be expressed
at different levels in different fiber types. Curiously, Fhl1
(#8) is differentially expressed between rat soleus and gas-
trocnemius, but this does not appear to be due to fiber
type composition [42]. Myh7 (#1) is primarily expressed
in cardiac muscle[43] and has been associated with cardi-
omyopathy,[44,45] but also appears to be expressed in
skeletal muscle[46] Two other parameters that influence
muscle function - muscle length and fiber length - do not
differ significantly between the five non-diaphragm skele-
tal muscle groups [30].
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Dataset compositions

Dataset Tissue

M (mouse) Muscle: EDL, diaphragm, gastrocnemius, quadriceps, soleus, TA
HI (human) Muscle: quadriceps

H2 (human) Muscle: deltoid, gastrocnemius, quadriceps, tibialis anterior

H3 (human)

Bone marrow, brain, heart, liver, lung, kidney, skeletal muscle, pancreas, prostate, spinal cord, spleen, thymus

Dataset compositions

Dataset Conditions Source # of Samples Affymetrix GeneChip
M (mouse) Control, mdx, mdx5< Immediate autopsy 36 U74Av2

HI (human) Control, DMD Surgical biopsy 24 U95Av2

H2 (human) Control Autopsy 32 UI33A

H3 (human) Control Autopsy!? 24 U95Av2

Functional studies have demonstrated significant differ-
ences in the mechanical properties of different mouse
muscles, but the data are somewhat conflicting. One study
found that the soleus muscle of dystrophin-utrophin dou-
ble knockout mice had a greater reduction in twitch force
than in extensor digitorum longus and diaphragm [47]. In
contrast, isometric contractions followed by stretch con-
tractions in extensor digitorum longus and soleus muscles
dissected from control and mdx mice resulted in irreversi-
ble damage only in mdx extensor digitorum longus [48].
The interpretation of this data is unclear, as the findings
were identified in different mouse strains. The mdx mouse
would genetically be expected to replicate the human dis-
ease most accurately, but the divergent phenotype com-
pared to human DMD raises doubts about this.

The use of animals to model human disease is compli-
cated by many factors. This is especially true in myopa-
thies where there are many different muscle types, some
of which may be more representative of human disease
than others. Based on phenotypic severity, mdx dia-
phragm appears to bear the closest relationship to human
disease. However, the diaphragm is not an extremity mus-
cle. Among extremity muscles in the mdx mouse, soleus
might merit special attention in studies of the pathophys-
iology of the muscular dystrophies.

Conclusion

1. Mouse soleus bears a closer molecular resemblance
than other mouse skeletal muscles to several different
human skeletal muscles.

2. This resemblance is consistent for both control and dis-
ease human tissue, and is specific for human muscle tissue
compared to non-muscle tissue.

3. These results may be due in part to differences in fiber
type composition.
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