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Abstract

Background: Variance of peak bone mass has a substantial genetic component, as has been shown
with twin studies examining quantitative measures such as bone mineral density (BMD) and
quantitative ultrasound (QUS). Evidence implicating single nucleotide polymorphisms (SNPs) of the
transforming growth factor beta-1 (TGFBI) gene is steadily accumulating. However, a
comprehensive look at multiple SNPs at this locus for their association with indices of peak bone
mass has not been reported.

Methods: A cohort of 653 healthy Caucasian females 18 to 35 years old was genotyped for seven
TGFBI SNPs. Polymorphisms were detected by restriction endonuclease digestion of amplified
DNA segments.

Results: The frequencies of the least common allele at G-800A, C-509T, codon 10 (LI0P), codon
25 (R25P), codon 263 (T263l), C861-20T, and 713-8 delC loci were 0.07, 0.33, 0.41, 0.08, 0.04,
0.25 and 0.01, respectively. A significant association was seen between QUS Stiffness Index (QUS-
Sl) and the SNP at codon 10 and the linked promoter SNP, C-509T. This association remained
significant after multiple regression was used to incorporate important clinical covariates — age,
BMI, level of activity, family history, and caffeine intake — into the model.

Conclusion: The association of QUS-SI with -509T is consistent with a gene-dose effect, while
only individuals homozygous for the codon |0P allele showed a significant increase. In this cohort
of young healthy Caucasian females, the T allele at position -509 is associated with greater bone
mass as measured by calcaneal ultrasound.
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Background
Osteoporosis is a common disorder of aging characterized
by low bone mineral density (BMD), deteriorating bone
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Polymorphic loci of the TGFBI gene. Each locus (A to G) is shown in relation to the promoter, transcription start site
(arrow), the exons (rectangles), the pre-propeptide (white rectangles), propeptide (black rectangles) and mature sequence
(grey rectangles). Synonyms for each SNP (named differently by different researchers depending on annotation of position |)

are given in the shaded boxes.

microarchitecture, and increased fracture rate.
Osteoporosis and BMD are both complex traits with a
strong genetic component [1,2]. Among the genes that
have been associated with BMD are those encoding the
vitamin D receptor [3,4], the estrogen receptors [5,6], col-
lagen la1 [7], apolipoprotein E [8], and TGFB1 [9].

Abundant in bone matrix [10], secreted TGFB1 is an
important regulator of osteoblast proliferation and differ-
entiation and directly affects bone formation in vivo [11].
Activating mutations in humans are associated with
Camurati-Engelmann disease, a disorder of progressive
diaphyseal dysplasia characterized by increased BMD
[12,13]. Homozygous knock-out of the TGFB1 gene in
mice is associated with an osteopenic phenotype [14]. Itis
not surprising, therefore, that the TGFB1 locus has
emerged as a strong candidate gene in the study of oste-
oporosis genetics.

The TGF-f1 amino acid sequence is highly conserved
across mammalian species, indicating a strong selection
against variant forms of the protein [15]. Variable expres-
sion or activation of TGF-f1 may therefore be associated
with altered bone remodeling and different overall BMD
[6]. Thus, elevated serum TGF-1 levels are associated

with osteosclerosis, and conversely, decreased serum TGF-
1 with osteopenia.

Nine TGFB1 SNPs have been identified and studied. Three
reside in the promoter region (C-988A, G-800A, C-509T).
An insertion of a basepair is found in the 5' UTR at
n.+72C. Two SNPs are in the signal sequence (L10P or
n.T869C, and R25P or n.G915C), one in exon 5 (T263I or
¢.C788T) [16], and one in each of introns 4 and 5 (713-
8delC [17] and C861-20T [18], respectively) (Figure 1).

A number of studies have examined the association of
TGFB1 polymorphisms with TGF-B1 levels. In post-men-
opausal British women, the -509T allele was associated
with higher total serum TGF-B1 [19], but this association
was not confirmed in post-menopausal Chinese [20] or
Japanese cohorts [21]. Similarly, the L allele at codon 10
was found to be associated with higher serum TGF-B1 lev-
els in middle aged European women [22], but these find-
ings were not confirmed in elderly Australian [23] or
Chinese [20] women.

Other studies have also examined these allelic variants
with respect to effects on bone. In 256 postmenopausal
Italian women, Bertoldo et al. found strong evidence of
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association between the 713-8delC SNP and: (i) femoral
neck BMD (FN-BMD), (ii) prevalence of hip fractures, and
(iii) high bone turnover [24]. In 123 osteoporotic cases
and 131 matched normal controls, Langdahl et al. found
that the same 713-8delC deletion was associated with low
bone mass and increased bone turnover [17]. In 76 pre-
menopausal women, Keen et al. reported that the 861-
20C allele was associated with higher BMD at the femoral
neck, but not at the lumbar spine or with quantitative
ultrasound (QUS) at the heel [18]. In a subsequent publi-
cation by Langdahl et al. involving 1168 osteoporotic
cases and controls, the T allele at T861-20C was associated
with significantly higher LS and FN BMD, while the T
allele at C-509T was significantly associated with higher
FN BMD, and the Pro allele of L10P was associated with
greater FN BMD [25]. A study of the L10P variant in 625
Japanese women showed significant association of the
10P allele with higher lumbar spine (LS) BMD and total
BMD [21]. This study also examined the -509 site and
concluded that -509 T allele, alone or in combination
with 10P, is a genetic determinant for osteoprosis. How-
ever, the more common allele at codon 10 (leucine) was
found to be associated with higher LS BMD and FN BMD
in middle-aged European women [22] and with higher FN
BMD in Chinese elderly [20]. In 1337 elderly Australian
women, the 10P allele associated with lower hip BMD and
heel QUS [23]. The codon 10 polymorphism was not seen
to have any association to BMD in 3382 elderly Caucasian
American females [26]. In 356 healthy Japanese adoles-
cents, however, the -509 CC homozygotes were found to
have 5 to 6% greater radial BMD, and higher bone min-
eral content than the corresponding TT group [27].

In none of these reports were multiple SNP sites examined
simultaneously in relation to peak bone mass. We there-
fore undertook a study of seven TGFB1 polymorphisms in
relation to BMD indices as well as clinical covariates in a
group of healthy young women with well characterized
clinical and laboratory phenotypes to determine their
relationship to peak bone mass.

Methods

Subjects

The 653 healthy non-related Caucasian female subjects
presented in this report were recruited by advertising for a
study of bone and mineral metabolism in the Greater
Toronto Area, as described previously [4,6]. In this study,
data on 25 women identified as originating from the
Indian sub-continent were excluded.

The study protocol was approved by the Institutional
Review Board of the University of Toronto (Toronto, ON)
and written consent was obtained from each individual at
the onset of the study [4]. Each subject completed a stand-
ardized questionnaire about lifestyle factors, menstrual
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and reproductive history, past history of medical diseases,
current and prior medication use, history of fractures, and
family history of osteoporosis. Summary clinical charac-
teristics (mean + SD) include: age, 27.5 + 4.5 yr (range 18
to 35 yr); weight, 63.3 + 11.6 kg; height, 1.65 + 0.06 m;
and BMI 23.2 + 3.9 kg/m?2.

Assessment of BMD

BMD was measured at the hip (left femoral neck = FN)
and lumbar spine (L2-L4 = LS) by dual-energy X-ray
absorptiometry using a DPX-L absorptiometer (Lunar
Corp., Madison, WI, U.S.A.). BMD was reported as grams
per square centimeter. Quantitative Ultrasound (QUS)
measurements were also conducted, consisting of broad-
band ultrasound attenuation (BUA, dB/MHz), speed of
sound (SOS, m/s) and the calculated heel stiffness index
(SI, % of age-matched controls), at the right heel (Lunar
Achilles; Lunar Corp., Madison WI), as published previ-
ously [4]. Summary statistics for our study cohort were:
LS-BMD, 1.19 + 0.13 g/cm2; FN-BMD, 1.00 + 0.12 g/cm2;
and QUS-SI, 97.2 + 14.1.

DNA isolation and genotyping

DNA was extracted from EDTA-anticoagulated blood as
previously described [6]. Gene fragments including the
SNPs of interest were amplified by polymerase chain reac-
tion (PCR). Of the nine SNPs known in this region, two
were not included in this study. SNPs are named by either
nucleotide sequence or amino acid sequence, using the
most commonly reported annotation in literature. The
SNP +72C was not examined, since previous work [16]
revealed it to be in complete linkage with the codon 25
SNP. An additional SNP in the promoter, C-988A, was
excluded because the frequency was reported to be only
0.2% [16]. The relative positions of the remaining seven
intragenic SNPs are shown in Figure 1. To genotype the
C861-20T SNP, previously published methods were used
[18]. Methods for genotyping the other six SNPS by PCR
amplification and RFLP digestion are similar to those pre-
viously published [4]. Given their pairwise proximity,
three amplicons were used for genotyping: one for the
pair of promoter SNPs, -800 and -509, a second for codon
10 and codon 25, and a third for 713-8delC and codon
263. Primer pairs are given in Table 1. PCR conditions
were: 94°C for 1 min (denaturing), 62°C for 40 secs
(primer annealing), and 72°C for 1 min + 1 second/cycle
(extension) for 35 cycles. Two ul of Q-solution (Qiagen
Corp) were added to the codon 10/25 PCR mixture to
facilitate amplification of this GC-rich fragment. Also
listed in Table 1 are the restriction endonuclease enzymes
used to detect one of the two alleles (as specified).
Digested DNA products were run on pre-cast Clearose BG
wide-mini S-50 gels (Elchrom Scientific, Zurich, Switzer-
land) and stained with ethidium bromide. All genotypes
were sequenced to confirm restriction digestion results.
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Table I: Primer sequences used for the amplification of polymorphic TGFBI sites.

Downstream Primer Upstream Primer Amplicon Size (bp) Enzyme2 Cleavageb

-800 Ecol81l  Wild-type
AGAACAGTTGGCACGGGCTT AACGGAAGAGAGTCAGGCT 583

-509 Tail Wild-type

Codonl0 MspAll  Wild-type
CTACCTTTTGCCGGGAGACC  CACCAGCTCCATGTCGATAG 226

Codon25 CTTTCGCCTTAGCGCCCACT TAGTTGGTGTCCAGGGCTCG 343 Sau961  Wild-type

Codon 263 Fokl Wild-type

713-8delC BseL | Variant

aRestriction endonucleases (Enzyme) are shown with digestions conducted separately. bAllele recognition (and cleavage) for either the major (Wild-
type) or minor (Variant) allele.

Table 2: TGFBI genotype and variant allele frequencies, and pair-wise standardized LD coefficients (A")

Linkage Disequilibrium Coefficients (A")

SNP Genotype Frequency Variant Allele -800 -509 Codon 10 Codon 25 713-8DelC  Codon 263
Frequency
GG 564
-800 GA 85 0.07
AA 4
CccC 280
-509 CT 310 0.33 -0.53%#*
TT 63
Codon 10 TT 212
TC 337 0.41 -0.47+%  0.88%F
CcC 97
Codon 25 GG 555
GC 92 0.08 -0.66%F  -0.44%F 0.48%+*
CcC 5
713- 8delC CcC 626
C- 18 0.04 -0.61 -0.77%* -0.80%+* -1.00%*
-- 0
Codon 263 CcC 369
CT 242 0.0l -0.25 0.467* 0.50%* -0.32 -1.00°%*
TT 41
C861-20T CcC 608
CT 43 0.25 -0.26 *  0.007 -0.10% -0.37°%* 0.22% -0.49°*
TT 2

*P <0.05, P < 0.01, ** P <0.001
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Table 3: Clinical variables grouped by -509 and codon10 Genotype.*

http://www.biomedcentral.com/1471-2474/6/29

-509 Codonl0

CC §(280) CT (310) TT (63) LL (212) LP (337) PP (97)
Age (yr) 27.1 £43 279 £ 47 275+48 273 +42 276 £ 4.6 27.7£49
Weight (kg) 63+ 13 64+ |1 62+9 632 64 12 62+9
Height (m) 1.65 + 0.06 1.65 + 0.07 1.66 + 0.07 1.65 + 0.06 1.65 + 0.07 1.65 + 0.07
Calcium intake 590 + 380 550 + 340 510 £ 310 580 + 370 570 + 370 510 + 300
(mg/day)
Caffeine intake 1.49 + 1.21 1.62 + 1.6l 1.33 £ 1.18 1.49 + 1.20 1.65 + .57 1.25 £ 1.21
(cups/day)
BMI (kg/m2) 233 233 23+4 233 233 233

*Data expressed as mean + SD
§Genotype counts (n) given in parentheses.

Statistical analysis

Haplotyping of -800 and -509 SNP loci was possible since
both SNPs were amplified in one PCR product, and simul-
taneous digestion by Eco181 and Tail produced a unique
pattern of fragments for each possible haplotype [28,29].
Loci were tested for Hardy-Weinberg (HW) equilibrium of
the distribution of the genotypes, and pairwise linkage
disequilibrium (LD) coefficients calculated and normal-
ized (A'), using methods of Weir et al. [30], and improved
software as we have described [31]. Bivariate correlations
between BMD, QUS-SI, and lifestyle factors, menstrual
and reproductive factors, and TGFB1 genotypes were
assessed using Spearman rank correlation coefficients, as
reported previously [4,6]. Each TGFB1 SNP was added to
the model without any clinical covariates and then with
covariates used in our established model [6]. All data
analyses were performed with SPSS for Windows 10.0.7
(SPSS Inc., Chicago, Illinois, U.S.A.).

Results

TGFBI polymorphisms

Frequencies of the minor alleles were: codon 10 (41%), -
509 (33%), C861-20T (25%), codon 25 (8%), -800 (7%),
codon 263 (4%), and 713-8delC (1%). For the -800 and -
509 haplotypes, 4.3% (n = 28) of the samples were dou-
bly heterozygous, and all were in trans, as detected by
sequential enzyme digestion (data not shown). Shown in
Table 2 are the pair-wise standardized LD coefficients (A').
In this population the -509 is closely linked to codon 10
(A" = 0.88) and is in negative LD with 713-8delC (A" = -
0.77). Codon 10 is also in negative LD with 713-8delC (A’
=-0.80).

Clinical characteristics by TGFBI genotype

In comparing clinical parameters among genotype
groups, no significant differences were observed for age,
weight, height, calcium intake, caffeine intake, or BMIL.

Summary data grouped by -509 and codon 10 genotypes
are shown in Table 3. Results for other genotypes are not
shown, as there are no significant differences, and the
other SNPs as explained below were not significant deter-
minants of peak bone mass in this population.

TGFBI SNPs and clinical characteristics

Correlations of QUS-SI, lumbar spine BMD, and femoral
neck BMD with clinical, lifestyle and the TGFB1 genotypes
are shown in Table 4. As previously reported for this
cohort, LS BMD is positively correlated with age, height,
weight, BMI and level of physical activity as an adolescent
[4]. At the hip, significant positive correlations of BMD
were found with height, weight, BMI, calcium intake, and
the amount of physical activity reported at time of study
and during adolescent years. Negative correlations were
seen with age and the amount of caffeine consumption
for the FN BMD. Heel QUS was positively correlated with
the same factors as FN BMD, with the exception of cal-
cium intake.

Association of TGFBI genotypes with BMD and QUS
There was no significant correlation of any TGFB1 SNP
with BMD at FN or LS (data not shown). Of the seven loci,
only the -509 SNP was significantly correlated with QUS-
SI. (r = 0.078, p = 0.038). Since this SNP is in strong link-
age disequilibrium with codon 10 (A' = 0.88) and 713-
8delC (A' = -0.77), all three of these SNPs were included
in further analysis.

The number of T alleles (0, 1 or 2) at the -509 site shows
significant association with QUS-SI (Figure 2). Mean
QUS-SI was higher in TT homozygotes (101.2 + 12.9)
than in CT heterozygotes (97.42 + 10.30, p = 0.04) or CC
homozygotes (95.8 + 9.31, p = 0.006) and in heterozy-
gotes versus CC homozygotes (p < 0.05). A similar allele-
dose effect was not observed with the codon10 SNP;
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Table 4: Correlation coefficients (Spearman R) and their significance (p) are shown for QUS-SI and BMD in relation to clinical, lifestyle
and TGFBI genotypes.*

Regression Heel QUS-SI Lumbar Spine BMD Femoral Neck BMD
Parameters

R P R P R p
Clinical
Age -0.106 0.007 0.124 0.001 -0.109 0.005
Height 0.096 0.015 0.337 <0.001 0.323 <0.001
Weight 0.195 <0.001 0.166 <0.001 0.242 <0.001
BMI 0.157 <0.001 0.287 <0.001 0.208 <0.001
Lifestyle
Calcium Intake 0.050 0.203 0.065 0.098 0.095 0.016
Caffeine Intake -0.125 0.002 -0.004 0.927 -0.082 0.037
Smoking -0.027 0.499 -0.017 0.660 0.027 0.498
Currently Active 0.104 0.008 0.039 0.318 0.083 0.033
Adolescent 0.147 <0.001 0.108 0.006 0.112 0.004
Activity
SNPs
TGFBI -509 0.078 0.038 0.39 0.321 0.002 0.958
TGFBI codon 10 0.043 0.281 0.001 0.994 -0.02 0.614

*In bold are significant results (p < 0.05).

106

106+ p <0
- | p<o00s p<005 | 104+

p=0.01

103+ I I | | 103 - p=<005 |

102 - 1oz =
101
100

994

Heel Ultrasound Stifness Index

cC cT T LL LP PP
-509 Codon 10

Figure 2

Mean right heel ultrasound stiffness for -509 and codon 10 genotypes. Error bars represent standard error of means.
P-values were obtained by Scheffé correction for multiple testing after routine ANOVA.
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Table 5: Multiple linear regression analysis of genetic and clinical determinants of QUS-SI modelled to determine individual

contribution of -509 and codon|0.*

-509 Codon 10

Variables F-stat R2 p-value  Variables F-stat R2 p-value
Age 6.21 0.072 0.0130  Age 5.68 0.069 0.0175
Caffeine Intake 12.74 0.084 0.0004 Caffeine Intake 9.54 0.077 0.0021
BMI 19.24 0.185 <0.0001 BMI 18.75 0.185 <0.0001
Active as adolescent 7.46 0.107 0.0065 Active as Adolescent 9.06 0.120 0.0027
Currently Active 851 0.082 0.0037 Currently active 743 0.078 0.0066
Relatives with Osteoporosis 1.98 0.008 0.1598 Relatives with Osteoporosis 1.95 0.007 0.1627
§-509 SNP 3.18 0.056 0.0422  $Codon 10 3.32 0.062 0.0369

*Shown for each dependent variable are the individual F-statistics (F-stat), the variance attributable to that variable (R based on Type Ill sum of

squares), and the significance (p-value).

§ The -509 and codon 10 SNPS are significant (P <0.05) when added to the previously reported model [6]

homozygotes for the rare allele (PP group) had a signifi-
cantly higher mean QUS-SI (100.6 + 13.2) than heterozy-
gotes (96.4 + 14.1, p = 0.007) or LL homozygotes for the
T allele (97.2 + 14.2, p = 0.041). Adjusted QUS-SI means
for the -509 SNP, after correction for age, caffeine intake
and BMI (means of 27.5 years, 1.54 cups/day and 23.2 kg/
m?, respectively), were: CC 93.6 + 1.0, CT' 95.0 + 1.0, and
TT 98.7 + 1.9. For codon 10, adjusted means were: LL 94.8
+1.1,LP93.7 + 1.0 and PP 98.3 + 1.5. For SNP 713-8delC,
only 18 heterozygotes were found and no significant dif-
ference in QUS-SI means was observed (data not shown).

Multivariate analysis

Based on the model previously reported by Rubin et al.
[4], the seven TGFB1 genotypes were each introduced as
single additive variables (variant allele counted as 0, 1 or
2) to the original multivariate analysis to test for signifi-
cance. The LS BMD model included the following clinical
variables: weight, physical activity at time of study, and
physical activity during adolescence, age, paternal history
of osteoporosis, family history of osteoporosis, and past
amenorrhea greater than 3 months. None of the TGFB1
SNPs were significant predictors of LS BMD, nor were
results significant for femoral neck (data not shown).

In a previously reported model from our laboratory on
this group of Caucasian females the estrogen receptor
(ER1) SNPs were examined [6]. ER1 Xbal, Pvull restriction
haplotypes and AIB1 genotypes were interactively signifi-
cant in that model, which included the following clinical
covariates: age, physical activity at the time of the study
and physical activity in adolescent years, caffeine
consumption, and BMI. When -509 and codon 10 SNPs
were added as new variables to the clinical covariates
model, they remained significant (Table 5). Thus, the -509

and codon 10 SNPs appear to make significant independ-
ent contributions to the explained variance of QUS-SI.

Discussion

TGF-B1 is a secreted factor that plays an important role in
bone remodelling. It is a potent stimulator of osteoblastic
bone formation, causing chemotaxis, proliferation and
differentiation in committed osteoblasts [11]. Although in
vitro experiments have led to conflicting reports about the
effects of exogenous TGF-1 in cultured osteoblast sys-
tems [32,33], secreted TGF-f1 leads to matrix growth and
osteoblast stimulation in vivo, while it inhibits mineraliza-
tion, osteoclast differentiation and the resorptive activity
of mature osteoclasts [34,35]. Mouse knockouts for
TGFB1 have skeletal defects, including shortened long
bones and decreased tibial BMD. In humans, however,
mutations found in the pro-peptide of TGFB1 are associ-
ated with Camurati-Engelman Disease (CED), an
autosomal dominant disorder manifesting as periosteal
and endosteal thickening of the long bone diaphyses
[12,13]. Most of these mutations lie in the Latent Associ-
ated Peptide (LAP) that is cleaved from the mature TGF-
B1 peptide. LAP subsequently binds to mature TGF-1 to
form an inactivated secretory complex. Presumably,
mutations that interfere with binding of LAP to the
mature peptide would lead to increased TGF-B1 activa-
tion, stimulating bone remodelling, net bone deposition,
and resulting in a denser skeleton.

In our cohort, allele frequencies for the -800, -509, codon
10, codon 25 and codon 263 SNPs are in agreement with
those published by Cambien et al. [16], and Syrris et al.
[36], who examined French, Irish and UK populations.
Allele frequencies in our cohort for 713-8delC and C861-
20T, respectively, are comparable to those in the Euro-
pean Caucasians studied by Langdahl et al. and by Keen et
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al. [17,18]. Of the 7 SNPs examined for linkage, 713-
8delC was in complete negative LD with codon 25 and
codon 263. The 713-8delC SNP was in strong negative LD
with -509 (A' = -0.77) and codon 10 (A' = -0.80), suggest-
ing a single haplotype. Moreover, disequilibrium coeffi-
cients in our population were comparable to those
reported by Cambien et al [16].

The two SNPs in the promoter, G-800A and C-509T, may
theoretically alter the binding of RNA polymerase or other
transcription factors. Luedecking et al. found that the tran-
scriptional activity of the -509T variant allele of the TGFB1
gene was slightly greater than that of the common C allele
[37]. Serum TGF-B1 concentrations are increased in a gene
dose-dependent fashion, with differences in concentra-
tions in TT homozygotes being twice that of TC individu-
als, when the CC genotype is taken as the referent [19].
Our results for the -509 polymorphism are consistent with
this view that the T allele (high TGF-B1 producer) is asso-
ciated with increased bone formation in young women,
since heel QUS-SI is increased in rough proportion to the
number of T alleles present. Langdahl reported a similar
finding in a healthy Danish middle aged cohort, in whom
higher FN BMD was associated with TT genotype [25]. In
the Japanese population, however, the -509 CC genotype
has been found associated with higher BMD [21]. This dif-
ference may be due to background genetic differences in
the populations, ascertainment differences affecting the
TGF-B1 genotype distribution in the sample set, or envi-
ronmental factors. Differences in linkage disequilibrium
may also contribute to this discordance, and shed light on
parallel differences with codon 10 associations. In some
studies, the 10Pro allele is associated with increased BMD
[21,25], but not in others [20,22,23].

The TGFB1 codon 10 and 25 polymorphisms are located
in the signal sequence, which is cleaved from the TGF-B1
precursor at codon 29 (Gly?°-Leu3° peptide bond). In gen-
eral, signal sequence mutations affect peptide export effi-
ciency [38]. The replacement of leucine by proline at
position 10 would be expected to disrupt the alpha-helical
domain, while replacement of arginine by proline at posi-
tion 25 would change the characteristic polarity of the
carboxyl domain of the signal sequence. In either case,
altered signal peptide regulation leading to differential
trafficking or export would be the likely mechanism
underlying genotype-dependent differences in TGF-B1
metabolism.

The physiologic evidence for such differential expression
is not extensive. Awad et al. reported a significant
correlation between codon 25 genotype and amounts of
TGF-B1 secreted by cultured lymphocytes stimulated in
vitro [39]. Significant association of the codon 10 geno-
type with plasma TGF-B1 concentrations, BMD at lumbar
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spine, and vertebral fracture frequency, has been reported
in controls and 2 different Japanese populations of oste-
oporotic patients [40]. In both control and osteoporotic
groups, the association with higher plasma TGF-f1 and
the 10P allele was roughly additive [9]. In a study of Japa-
nese adolescents, those homozygous for the 10P genotype
had significantly higher BMD than those homozygous for
the L10 allele [27]. These results suggest that increased
skeletal mineralization during puberty may be related to
the presence of a 10P allele. Our study of Caucasian pre-
menopausal women found no difference in BMD at either
FN or LS, but found a positive association between the
Leul0 allele and calcaneal QUS-SI.

Of the remaining SNPs, Langdahl et al. reported that the
713-8delC was more frequent in osteoporotic women (6/
123), than controls (2/131) but no correlation to bone
mass was demonstrated in the controls [25]. It is possible
that linkage of this SNP with other functional sites pro-
vides an explanation for variable but genuine association
with parameters of bone strength and mineral density.
Indeed, we observed that the 713-8delC is in negative dis-
equilibrium with codon 10 and -509 (A'=-0.77 and -0.80,
respectively) in our population. Thus, previous positive
results with this genotype alone may represent association
with a haplotype extending across all 3 loci.

None of the TGFB1 SNPs in this study was significantly
associated with either spine or hip BMD. Although appar-
ently negative in contrast to other studies, our findings
may be explained in part by the demographic characteris-
tics of our cohort. Ours was a population of healthy young
adults, whereas previous research showing an association
with codon 10 and 713-8delC was based on post-meno-
pausal women diagnosed with osteoporosis [25]. It is gen-
erally understood that studies of post-menopausal
women are predominantly investigations of the rate of
bone loss, whereas those in young adults are identifying
genetic determinants of peak bone mass accumulation.
While BMD is a measure of the density of the mineralized
bone, QUS-SI is a measure of bone architecture as well
[41].

The skeletal site examined for bone mass and bone quality
is important. Modelling of data in twins has indicated that
there are both common and specific genetic factors acting
on bone at different skeletal sites and on different aspects
on bone quality [42,43]. Our study suggests that TGFB1
genetic variation does not seem to be a major factor in
total bone mineralization per se, at least as measured by
BMD at the hip and femur.

Significant linkage disequilibrium exists between -509
and codon10 alleles and the results in our cohort (A' =
0.88) are no exception. However, the LD is not complete,
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and it is therefore no surprise that both -509 and codon
10 show association to QUS-SI, even when entered as
independent variables in the multiple regression analysis.
When means are compared for each genotype at a single
locus, only the -509 genotypes showed a gene dosage
effect, much as Yamada et al. described in a cohort of Jap-
anese adolescents [27]. Evidence indicates that the T allele
of -509 may be the more important SNP leading to an
increase rate of transcription, which in turn affects bone
mass. For our cohort, the multiple regression model for
QUS-SI, as the dependent variable, adjusted for clinical
covariates (age, height, weight, BMI, caffeine and calcium
intake) and therefore these factors are likely confounders
of the genotype effects seen.

Our findings must be interpreted in the context of several
potential limitations. Our Caucasian cohort was recruited
from an ethnically diverse urban population and admix-
ture effects cannot be excluded. Only women were
recruited, and we cannot say whether a similar association
would be observed in men. Recruitment was conducted
by public advertisement, and there may be significant bias
toward those believing they were at higher risk for a bone
related disease, particularly because of family history.
However, the parameters for LS and FN BMD and for
QUS-SI are comparable to other cohorts of healthy young
women [4], and the associations we describe are inde-
pendent of family history in our multiple regression
model.

Common variations in DNA sequence are often associ-
ated with mild phenotypic effects [44]. Thus even a single
SNP could account for a significant variation in bone mass
so as to potentially influence subsequent fracture risk.
However, the contribution of genotypes determined by all
intragenic loci within a gene must be evaluated with envi-
ronmental factors, in order to generate a balanced picture
of gene-environment interactions for a complex quantita-
tive trait like peak bone mass.
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