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Abstract
Background: Dupuytren's contracture or disease (DD) is a fibro-proliferative disease of the hand
that results in the development of scar-like, collagen-rich disease cords within specific palmar fascia
bands. Although the molecular pathology of DD is unknown, recent evidence suggests that β-
catenin may play a role. In this study, collagen matrix cultures of primary disease fibroblasts show
enhanced contraction and isometric tension-dependent changes in β-catenin and fibronectin levels.

Methods: Western blots of β-catenin and fibronectin levels were determined for control and
disease primary cell cultures grown within stressed- and attached-collagen matrices. Collagen
contraction was quantified, and immunocytochemistry analysis of filamentous actin performed.

Results: Disease cells exhibited enhanced collagen contraction activity compared to control cells.
Alterations in isometric tension of collagen matrices triggered dramatic changes in β-catenin and
fibronectin levels, including a transient increase in β-catenin levels within disease cells, while
fibronectin levels steadily decreased to levels below those seen in normal cell cultures. In contrast,
both fibronectin and β-catenin levels increased in attached collagen-matrix cultures of disease cells,
while control cultures showed only increases in fibronectin levels. Immunocytochemistry analysis
also revealed extensive filamentous actin networks in disease cells, and enhanced attachment and
spreading of disease cell in collagen matrices.

Conclusion: Three-dimensional collagen matrix cultures of primary disease cell lines are more
contractile and express a more extensive filamentous actin network than patient-matched control
cultures. The elevated levels of β-catenin and Fn seen in collagen matrix cultures of disease
fibroblasts can be regulated by changes in isometric tension.
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Background
Dupuytren's contracture or disease (DD) is a benign, but
debilitating fibro-proliferative disease of the palmar fascia
[1] that causes permanent flexion of the affected fingers
[2]. Clinically, DD progresses through distinct stages with
the earliest stage of the disease characterized by the
appearance of small nodules of hyperproliferative cells
that give rise to scar-like, collagen-rich disease cords (Fig
1).

In spite of numerous studies over the years, the etiology of
this disease remains obscure. However, DD does display
several features of a cancer, including high rates of recur-
rence following surgery, distinct chromosomal abnormal-
ities [3–7], and increased total and cancer mortality rates

among men with established disease [8,9]. This notion is
further supported by studies from our labs and others that
show aberrant expression of β-catenin, a key cell signal-
ling molecule frequently mutated in human cancers
[10,11], in DD [12,13], including several related fibroma-
toses [14–18]. Additional studies from our laboratories
also suggest that β-catenin may play an important role in
cutaneous wound healing [19].

β-catenin was first identified as a component of cell-cell
adhesion structures (adherens junctions) that physically
couples cadherins to the cytoskeleton via α-catenin (Fig.
2) [20–22]. It is also a key signalling factor within the
canonical Wnt pathway [10], which is involved in growth
and development of numerous cell types [23]. In the

Classical presentation of Dupuytren's contractureFigure 1
Classical presentation of Dupuytren's contracture. The most commonly affected digits are the ulnar digits (ring and 
small fingers). Surgery is indicated when joint contracture exceeds 30°, or when nodules are painful and interfere with hand 
function.
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canonical Wnt pathway (Wnt/β-catenin), these secreted
ligands bind to receptor complexes, consisting of a Friz-
zled (Fz) receptor and a low-density lipoprotein receptor-
related protein (LRP) [24–27]. Upon Wnt stimulation gly-
cogen synthase kinase-3β (GSK-3β) catalyzed phosphor-
ylation of β-catenin is inhibited resulting in an increase in
the 'free' (uncomplexed to cadherin) cytosolic levels of β-
catenin. This in turn leads to its subsequent accumulation

within the nucleus, where it binds to members of the Tcf/
Lef (T-cell factor-lymphoid enhancer factor) transcription
factor family [28,29] to regulate gene expression [30–34].

Alterations in the extracellular matrix (ECM) are another
important clinical feature of DD. Disease cords are largely
composed of collagen type I, and have elevated levels of
collagen type III compared to normal palmar fascia tissue

Canonical Wnt/β-catenin pathwayFigure 2
Canonical Wnt/β-catenin pathway. β-catenin is a component of cell-cell adhesion structures (adherens junctions) [20–22] 
and a key signaling factor in the Wnt pathway [10]. As shown here canonical Wnt signalling (Wnt/β-catenin) is defined by its 
inhibition of glycogen synthase kinase-3β (GSK-3β) catalyzed phosphorylation of β-catenin. Several factors, including Cer (cer-
ebrus), WIF-1 (wnt-interacting protein), and sFRPs (secreted frizzled related proteins) and dickkopf-1 (Dkk) are known to 
antagonize Wnt signalling [63–69]. However, upon Wnt stimulation several Fz-LRP downstream signalling components, includ-
ing the phosphoprotein dishevelled (Dvl) [70–72], GBP/Frat1 (GSK-3β Binding Protein) [73] and casein kinase I  (CKIε) 
[74,75], somehow co-operate to inhibit GSK-3β. This ultimately this leads to an increase in the cytosolic 'free' levels of β-cat-
enin (uncomplexed to cadherin), and its accumulation within the nucleus where it binds to members of the Tcf/Lef (T-cell fac-
tor-lymphoid enhancer factor) transcription factor family to activate gene transcription in a cell-context dependent manner 
[28–34]. In the absence of Wnt signalling, Axin/conductin [76,77] in co-operation with the product of the tumour suppressor 
gene adenomatous polyposis coli (APC) [78,79] facilitate GSK-3β mediated phosphorylation of β-catenin on N-terminal serine 
and threonine residues [80]. This hyper-phosphorylated form of β-catenin then binds to the F-box protein β TrCP, which tar-
gets β-catenin for degradation via the ubiquitin-proteosome pathway [81–84].
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[35–38]. Fibronectin (Fn), a well known extracellular
glycoprotein that plays a vital role in numerous cell func-
tions, including adhesion, proliferation, migration, and
differentiation [39], is also prominently expressed in DD
lesions, most notably within extracellular plaques, termed
fibronexus, that are closely associated with DD myofi-
broblasts [40]. To-date, various Fn isoforms and their
post-translational modified forms (ED-A, ED-B, oncofetal
Fn), which are typically associated with tissues undergo-
ing extensive proliferation and remodelling, have been
documented in DD [41,42]. Recent studies in our lab have
also documented aberrant expression of oncofetal Fn in
primary cultures of DD lesions compared to patient-
matched control fascia derived primary cultures (Varallo

et al. unpublished). Although the importance of oncofetal
production by DD cells are not clear the ability of these
cells to actively modify the composition of the ECM
appears to facilitate collagen contraction in vitro (Fig. 3)
[43]. Nevertheless, the exact roles that these Fn isoforms,
or indeed other ECM components play in the pathogene-
sis of DD is not known.

In light of the potential role of β-catenin in the pathogen-
esis of DD [13] and the importance of ECM in DD, we
examined both β-catenin and Fn levels in relation to
mechanical stress, using Fibroblast Populated Collagen
Lattice (FPCL) cultures of patient-matched normal and
disease primary cell lines. Recent studies from our labs

Fibroblast Populated Collagen Lattice contraction assaysFigure 3
Fibroblast Populated Collagen Lattice contraction assays. Fibroblast populated collagen lattice (FPCL) cultures have 
been used by many researchers to model cell-ECM interactions associated with wound contraction and DD [58]. As illustrated 
here three types of FPCLs have been used by investigators, including (A) Floating- (B) Attached- and (C) Stressed-matrices. 
Floating-matrices are mechanically released from the sides of the dishes immediately after gel polymerization (1 hour). In con-
trast, isometric tension is allowed to build up in cells placed in attached- and stressed-matrix cultures. In attached-matrices the 
contractile forces exerted by cells encounter mechanical resistance, which is thought to mimic 'granulation tissue contraction' 
(D, in vivo-like phenotypes), while cells seeded in stressed-matrices develop isometric tension during an initial attached period 
(1 to 2 days) that dissipates when the lattices are mechanically released.
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have shown that FPCL cultures of primary disease cell
lines have significantly elevated levels of β-catenin com-
pared to control FPCL cultures [13], suggesting that ten-
sion and the surrounding ECM may be important factors
regulating β-catenin expression in DD. This is an intrigu-
ing possibility since tension and the ECM are important
clinical factors in DD [36,37,44–46]. Experiments
described here examined β-catenin and Fn levels as a func-
tion of changes in isometric tension. The phenotypic dif-
ferences between control and disease cell cultures
reported here suggest that the FPCL culture system may be
a good in vitro model to explore disease-specific changes
in cell function.

Methods
Clinical specimens and primary cultures
Surgical specimen were collected in strict compliance with
the Institute's chief pathologist and the ethics committee
for research involving human subjects at UWO. Briefly,
diseased fascia (cords) and adjacent, uninvolved (control)
palmar fascia tissue was collected and divided in two por-
tions for protein analysis (immediately stored -80°C) and
primary cell cultures. For explant cultures, fascia specimen
were finely minced and placed in starter media consisting
of α-MEM (Gibco, Invitrogen Corporation, Grand Island,
NY) containing 20% fetal bovine serum (FBS, Clontech
Laboratories, Palo Alto, CA) and antibiotics (Penicillin G
+ streptomycin sulfate, Gibco, Invitrogen Corporation,
Grand Island, NY). Established primary cell culture lines
were maintained in α-MEM containing 10% FBS and anti-
biotics. Culture flasks were incubated at 37°C in a humid-
ified chambers with 5% CO2. Medium was changed every
4–5 days and the cells were sub-cultured using 0.05%
Trypsin-EDTA (Gibco, Invitrogen Corporation, Grand
Island, NY) when confluent.

FPCL contraction assay
Collagen contraction assays were carried out using disease
(D) and control (C) primary cell cultures established from
lesional and adjacent normal (uninvolved) fascia from
the same patient (i.e. patient-matched), respectively. Pri-
mary cultures (passages 4–6) were grown as three dimen-
sional Fibroblast Populated Collagen Lattices, or FPCL
(Fig. 3). Collagen lattices were prepared by mixing cells
with a neutralized solution of collagen type I (8 parts
Vitrogen100 collagen type I, 2.9 mg/ml, Collagen Corp,
Santa Clara, CA, USA + 1 part 10x α-MEM + 1 part HEPES
buffer, pH 9). Final collagen and cell concentrations for
the FPCL were 2.0 mg/ml and 2 × 105 cells/ml of matrix,
respectively. The cell-collagen mixture was then aliquoted
into 24 well culture dishes (0.5 ml/well) that were pre-
treated with a PBS + 2% BSA solution. Once polymerized
(1 hr, 37°C) α-MEM + 10% fetal calf serum (FCS) was
added atop FPCLs in each well. After 2 days of incubation,
the attached FPCL were mechanically released from the

sides of the culture plates. Digital images of the contract-
ing FPCL were captured at various time points over 5 days
using a conventional flatbed scanner. Collagen lattice
areas were then measured using NIH imaging software.

Western blots
FPCL were harvested at various post-mechanical released
time points, homogenized and protein extracts prepared
using a modified RIPA buffer (50 mM Tris-HCl (pH 7.4),
1% NP-40, 150 mM NaCl, 1 mM EDTA) supplemented
with a cocktail of protease inhibitors (1 mM PMSF, 1 µg/
ml of aprotinin, leupeptin, pepstatin) and phosphatase
inhibitors (1 mM Na3VO4, 1 mM NaF) (Sigma, St. Louis
MO, USA). The resulting FPCL homogenate was then cen-
trifuged (15 min, 4°C 12,000 × g) to remove cell debris.
Cells numbers were quantified using an in vitro toxicology
assay kit based on lactic dehydrogenase (LDH) levels
(Sigma, St. Louis MO, USA), according to the manufactur-
ers instructions. Equivalent cellular protein levels were
then analyzed by SDS-PAGE (12%) and subsequently
transferred to polyvinylidene difuoride (PVDF) mem-
branes (BioRad, Hercules CA, USA). Membranes were
blocked overnight (4°C) with a PBS solution containing
0.1% Tween 20 (PBST) and 5% fat free skim milk, washed
2x in PBST, and then sequentially probed with anti-β-cat-
enin (1:750, Transduction Laboratories, Lexington, KY,
USA), anti-Fn (clone IST-4, 1:500, Sigma, St. Louis MO,
USA), and anti-heat shock protein 47 (Hsp47) antibodies
(1:500, StressGen, Victoria BC, Canada). After a brief
series of PBS washes membranes were then incubated
with the horseradish peroxidase (HRP) conjugated 2°
antibodies (1:5000, Jackson ImmunoResearch, West
Grove PA, USA) for 45 min. at room temperature (RT).
Antibody-specific bands were visualized using enhanced
chemiluminescence (ECL) reagents and Kodak XLS film
(Rochester NY, USA). Antibody-specific bands for β-cat-
enin, fibronectin and Hsp47 were quantified using NIH
Imaging software. Both β-catenin and fibronectin levels
were normalized to control Hsp47 levels by calculating
the appropriate ratio values (i.e. β-catenin:Hsp47, and
Fn:Hsp47). The plotted bar graph values therefore repre-
sent the mean ratio intensity ± SEM per time point. For
attached-matrix experiments, harvested FPCLs were
treated as described above except that they were not
mechanically released from the sides of the dishes
throughout the 5 day incubation period.

Immunocytochemistry analysis of FPCL cultures
Individual lattices were briefly washed in PBS, fixed with
4% paraformaldehyde (Electron Microscopy Sciences, Ft.
Washington PA, USA) for 1 hr at room temperature (RT),
permeabilized in PBS + 0.5%Tween (PBST) for 15 min at
RT, and then blocked overnight at 4°C with PBS + 2%
donkey serum (Jackson ImmunoResearch, West Grove
PA, USA). Lattices were then incubated with the nucleic
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acid stain DAPI (4',6-diamidino-2-phenylindole, dihy-
drochloride, Molecular Probes, Eugene ON, USA) for 20
min at RT, and then stained for 20 min at RT with phalloi-
din-Alexa 488 (Molecular Probes, Eugene ON, USA). The
lattices were then briefly washed in PBS and mounted
onto glass slides using aqueous DAKO faramount mount-
ing media (DAKO Diagnostics, Carpinteria CA, USA).
Digital images were acquired on a Nikon eclipse TE-200
inverted fluorescent microscope using a Photometrics
series 300 cooled CCD camera, and deconvolved using
softWoRx (v 2.5) software (Applied Precision Inc.,
Issaquah WA, USA).

Results and Discussion
FPCL contraction
FPCL cultures of DD primary cell lines not only provides
a functional assay to quantify cell-mediated collagen con-
traction events, but also an 'in vivo-like' environment (i.e.
three-dimensional collagen-rich matrix environment) to
study cell-matrix interactions. Primary cell lines estab-
lished from patient-matched disease fascia and adjacent
uninvolved normal fascia tissue (n = 5 patient) were cul-
tured as 'stressed-matrices' (Fig. 3). Following 2 days of
attached-culture FPCLs were mechanically released from
the sides of the culture dishes and digital images of the
contracting gels collected over a 5 day incubation period.
As shown in Fig. 4, area measurements of the contracting
FPCL for all five patient-matched primary cell lines show
that the disease cell cultures contracted collagen signifi-
cantly more between 30 min. and 5 days compared to
control FPCLs (*P < 0.05, student T-test). The differences
in contraction rates is consistent with a number of earlier
FPCL studies that demonstrated enhanced contractile
activity of fibroblasts derived from DD lesions [47–49].
However, these studies utilized carpal tunnel fibroblasts
as control cells and often used a floating-matrix rather
than stressed-matrix contraction model to quantify cell-
mediated collagen contraction, thus making it difficult to
directly compare results.

Stressed-collagen lattices stained with phalloidin-Alexa
488, a fluorescent probe that binds filamentous actin,
revealed more prominent stress fiber networks in the dis-
ease FPCLs compared to control FPCLs (Fig. 5), suggesting
that the disease cells may be more inherently responsive
to factors that promote collagen contraction. Although
the exact nature of the cell signalling networks responsible
for the enhanced contractile activity of the disease cells is
unclear (e.g. cell-ECM interactions, growth factor path-
ways), the three-dimensional collagen matrix environ-
ment appears to differentially regulate the activity of the
control and disease cells.

Western analysis of stressed and attached FPCLs
Since β-catenin is aberrantly expressed in vivo and in vitro
(FPCL cultures) in DD [13], we examined its levels in rela-
tion to changes in mechanical stress (stressed- or attached-
matrices). Fibronectin (Fn) levels were also examined
since it plays an important role in cell-collagen interac-
tions [43,50,51], and the regulation and function of β-cat-
enin [52,53]. During the contraction of stressed-FPCLs β-
catenin levels transiently increased in disease cells, peak-
ing at 1 hr post-mechanical release (R1, Dis/ctrl ratio =
3.6) and decreasing thereafter to levels equivalent to, or
below those seen in control FPCLs, while in control
matrix cultures β-catenin levels did not significantly
change throughout the incubation period (Fig. 6). By
contrast, Fn levels in disease FPCLs (R0, Dis/ctrl ratio =

Stressed-matrix contraction of primary DD culturesFigure 4
Stressed-matrix contraction of primary DD cultures. 
The graph displays the percent FPCL contraction of five 
patient normal/control (C) and diseased (D) matched pri-
mary cell lines over an incubation period of 5 days. Data plot-
ted represents the mean ± SEM (standard error of the mean) 
values of all five patient-matched primary cell lines. Repre-
sentative images of contracting FPCLs are shown in the 
lower panel for the indicated time points after mechanical 
release of the FPCLs. Digital images of the contracting FPCLs 
were analysed using NIH Imaging software to determine lat-
tice areas for the indicated time points. Statistical pair-wise 
analysis was performed using a student t-test analysis. *Statis-
tical significance (P < 0.05) between disease and control 
FPCLs.
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2.7) steadily decreased upon mechanical release of the
matrices, while Fn levels in control lattices showed a slight
increase during contraction (Fig. 6).

While the observed decline in Fn levels in the disease
FPCLs is consistent with previous studies that show disas-
semble of cellular Fn fibrils upon loss of isometric tension
[54,55], the lack of change in Fn levels in the contracting
control FPCLs is unclear. Nevertheless it is conceivable
that the differences between the disease and normal
fibroblasts with respect to stress-induced changes in Fn
may simply reflect the disease-specific nature of these cells
since Fn is a gene target of the β-catenin/Lef-Tcf transcrip-
tional complex [52]. Considering that Fn can stimulate β-
catenin nuclear accumulation via ILK (integrin-linked

kinase) [56], and ILK itself can up-regulate Fn matrix
assembly [57], it is possible that both β-catenin and Fn
may share a common pathway within these cells.
Although the mechanism responsible for the tension-
dependent decrease in β-catenin is not clear it may also be
related to the non-proliferative state of relaxed or floating
FPCL cultures (Fig. 3) [58].

To further explore β-catenin and its relation to mechanical
stress, we also analyzed β-catenin levels within attached-
matrix (see Fig. 3) FPCL cultures. As shown in Fig. 7,

ICC of FPCL culturesFigure 5
ICC of FPCL cultures. Depicted are representative 
images from disease (d) and normal/control (c) matched pri-
mary culture (patient DUP48). The cells were grown as 
attached FPCLs for 2 days (105 cells/ml of matrix). Cells were 
then fixed and stained with phalloidin-Alexa 488 (green) and 
DAPI (blue) to label both F-actin and the nucleus, respec-
tively. Digital images were acquired on a Nikon eclipse TE-
200 inverted fluorescent microscope (10x objective) using a 
Photometrics series 300 cooled CCD camera, and decon-
volved using softWoRx (v 2.5) software (Applied Precision 
Inc., Issaquah WA, USA). Arrows identify prominent F-actin 
networks (stress fibres) within the diseased cells. The scale 
bar denotes 100 µ.

Western analysis of β-catenin and Fn in contracting FPCLsFigure 6
Western analysis of β-catenin and Fn in contracting 
FPCLs. The upper panel shows the western analysis results 
of contracting 'stressed' FPCLs of three patient-matched dis-
ease (D) and normal/control (C) primary cell lines (n = 3). 
FPCLs (3 lattices per cell line) were harvested at the indi-
cated time points following mechanical release and homoge-
nized for protein extraction. The resulting western blots 
were sequentially probed with β-catenin (1:750; clone 14, 
Transduction Laboratories), and Fn (clone IST-4, 1:500, 
Sigma) and Hsp47 (1:500, StressGen) antibodies. Antibody-
specific bands for β-catenin and fibronectin and Hsp47 were 
quantified using NIH Imaging software, normalized to Hsp47 
levels (ratio), and plotted (bar graphs, lower panel) as the 
mean ratio intensity ± SEM per time point.
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Western analysis of β-catenin and Fn in attached FPCLsFigure 7
Western analysis of β-catenin and Fn in attached FPCLs. Attached FPCLs (3 lattices per cell line) were harvested at 
the indicated time points, homogenized, and protein extract prepared for western analysis. Membranes were sequentially 
probed with β-catenin (1:750; clone 14, Transduction Laboratories), Fn (clone IST-4, 1:500, Sigma), and Hsp47 (1:500, Stress-
Gen) antibodies. Antibody-specific bands for β-catenin and fibronectin and Hsp47 were quantified using NIH Imaging software, 
normalized to Hsp47 levels (ratios), and plotted (bar graphs, lower panel) as the mean ratio intensity ± SEM per time point. 
Two patient-matched disease and normal/control primary cultures were examined.
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western analysis of attached-matrices showed an accumu-
lation of β-catenin in the disease cells over time, relative
to control Hsp47 levels, while β-catenin levels remain rel-
atively unchanged in the control cells. Although Fn levels
in both control and disease cultures increased over the
incubation period, Fn levels accumulated much faster
within the disease FPCLs compared to control FPCL cul-
tures (Fig. 7). Although the exact mechanism responsible
for the tension stimulated accumulation of β-catenin is
not clear it may be related to proliferative nature of
attached-matrix cultures [58].

Immunocytochemistry analysis of attached FPCLs
Given that Fn levels increase much earlier in the disease
FPCL cultures, and that Fn matrix can regulate β-catenin
levels, it is possible that disease cell cultures develop a
peri-cellular Fn matrix (fibronexus) much earlier, and
perhaps to a much greater extent, than control cells. Since
previous studies have shown that the formation of fila-
mentous actin (F-actin) networks parallels Fn matrix
assembly [55], we probed FPCLs for F-actin expression
using phalloidin-Alexa 488. Immunocytochemistry (ICC)
analysis shows that the disease cells form extensive stress-

fibres Fig. 5 and attach and spread within the collagen
matrix much earlier than control cells Fig. 8, suggesting
that the disease cells form a Fn matrix much earlier than
control cells within attached-matrix cultures. While it is
not clear whether β-catenin up regulates cellular Fn pro-
duction, and/or cellular Fn stimulates increased β-catenin
stability, it does appear that this altered metabolic state of
the disease cells promotes cell-collagen attachment and
cell-mediated collagen contraction. The build-up of iso-
metric tension within the FPCL cultures likely accelerated
this process since isometric tension can directly modulate
cell signalling events important to fibroblast contractility
[59], as well as stimulate the expression of contractile
markers such as Fn and α-SM actin in vivo [60]. Moreover,
the well recognized role that integrins (cell-ECM recep-
tors) play in helping to generate isometric tension and Fn
matrix assembly [51,61], suggests that integrin-mediated
signalling factors, like ILK, may provide a possible mech-
ano-chemical pathway linking isometric tension with
changes in the β-catenin and Fn levels. Nevertheless, the
possible relationship between β-catenin, Fn, ILK and
other signalling factors remains to be examined.

Conclusions
In this study, we have shown that primary cell cultures
derived from DD lesions display a number of phenotypic
differences when compared to patient-matched normal
fascia primary cultures. FPCL and ICC analysis shows that
DD cells are more contractile than control cells due, in
part, to an enhanced filamentous actin network. Western
analysis of disease and normal FPCLs show markedly ele-
vated levels of β-catenin and Fn expression in disease cell
lattices that are sensitive to changes in isometric tension.
More specifically, in disease cultures β-catenin and Fn
expression levels decrease dramatically when isometric
tension is reduced, while continued culture under stress
(attached FPCLs) stimulates increases in both Fn and β-
catenin levels. ICC analysis also suggests that disease cells
attach and spread more quickly in attached matrix cul-
tures, and form more extensive F-actin networks than con-
trol cultures.

The clinical importance of tension in wound-scar forma-
tion [62] and postoperative management of DD patients
[46], coupled with the tension-dependent changes in β-
catenin levels observed in this study, suggests a possible
mechano-chemical link between the aberrant expression
of β-catenin in DD lesions [13] and tension-induced scar
formations in fibro-proliferative disorders like DD. While
the exact role of β-catenin in the patho-mechanisms of
DD is unclear, future studies will be focussed on the rela-
tions between tension, β-catenin and the ECM.

Morphology of DD cells under isometric tension in FPCLsFigure 8
Morphology of DD cells under isometric tension in 
FPCLs. Depicted are attached (A) FPCL cultures of one 
representative patient-matched disease and control primary 
cell line (DUP36). FPCLs were harvested at the indicated 
attached time points (A0 – A48 hours). Lattices were fixed 
and stained for F-actin and DNA, using phalloidin-Alexa 488 
(green) and DAPI (blue), respectively (Molecular Probes 
Eugene ON, USA). Digital images were acquired on a Nikon 
eclipse TE-200 inverted fluorescent microscope (10x objec-
tive) using a Photometrics series 300 cooled CCD camera. 
The scale bar denotes 100 µ.
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MEM – alpha-minimal essential medium; FCS – fetal calf
serum; PMSF – phenylmethylsulfonylfluoride.
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