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Abstract

healthy tendon parts.

expressions of various genes were analyzed.

Background: The incidence of Achilles tendinopathy is high and underlying etiology as well as biochemical and
morphological pathology associated with the disease is largely unknown. The aim of the present study was to
describe biochemical and morphological differences in chronic Achilles tendinopathy. The expressions of growth
factors, inflammatory mediators and tendon morphology were determined in both chronically diseased and

Methods: Thirty Achilles tendinopathy patients were randomized to an expression-study (n = 16) or a structural-
study (n = 14). Biopsies from two areas in the Achilles tendon were taken and structural parameters: fibril density,
fibril size, volume fraction of cells and the nucleus/cytoplasm ratio of cells were determined. Further gene

Results: Significantly smaller collagen fibrils and a higher volume fraction of cells were observed in the
tendinopathic region of the tendon. Markers for collagen and its synthesis collagen 1, collagen 3, fibronectin,
tenascin-c, transforming growth factor§ fibromodulin, and markers of collagen breakdown matrix metalloproteinase-
2, matrix metalloproteinase-9 and metallopeptidase inhibitor-2 were significantly increased in the tendinopathic
region. No altered expressions of markers for fibrillogenesis, inflammation or wound healing were observed.
Conclusion: The present study indicates that an increased expression of factors stimulating the turnover of
connective tissue is present in the diseased part of tendinopathic tendons, associated with an increased number of
cells in the injured area as well as an increased number of smaller and thinner fibrils in the diseased tendon
region. As no fibrillogenesis, inflammation or wound healing could be detected, the present data supports the
notion that tendinopathy is an ongoing degenerative process.

Trial registration: Current Controlled Trials ISRCTN20896880

Keywords: Collagen, Gene expression, Patients, Growth factors, Tissue turnover

Background

Tendons connect muscle to bone and enable transmis-
sion of forces from contracting muscle to bone, resulting
in joint movement. They possess the ability to adapt to
changes in loading [1] and studies have shown that col-
lagen synthesis is increased as a result of both acute exer-
cise [2,3] and prolonged physical training [4]. The
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adaptation to loading can ultimately lead to increases in
CSA and collagen content in chronically loaded tendons
[5]. Despite this physiological ability to adapt, tendinopa-
tic tendons represents a large and constantly growing
clinical problem affecting both recreational and profes-
sional athletes as well as people involved in repetitive
labour [6,7]. Years of research have unfortunately not
provided much insight into the pathogenesis of chronic
tendinopathy [8]. Indeed, the etiology of tendinopathy
has been related to repeated micro strain below the fail-
ure threshold as an initiating stimulus for degenerative
processes [9,10]. Other authors, however, have proposed
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that mechano-biological under-stimulation results in a
degenerative cascade, through the production of a pat-
tern of catabolic gene expression that leads ultimately to
extracellular matrix degeneration [11]. Tendinopathy is
characterized by activity-related pain, focal tendon ten-
derness, and decreased local movement in the affected
area [12,13]. The general opinion is that no inflammatory
cells are present in the tendinopathic tissue [14] and that
tendinopathy is the result of a degenerative process with
collagen disorganization, collagen fibre separation,
increased cellularity, neovascularization and focal necro-
sis [15].

Previous studies have shown an altered concentration of
certain matrix metalloproteinases MMPs, AdAMt’s and
TIMP’s in normal and degenerate human Achilles tendon
[16]. Additionally several cytokines [9,10] can be found in
tendons and fibroblasts after cyclic mechanical stretching
in healthy tendon tissue. However, the published data
arises from the comparison of tendinopathic tissue with
either control tissue from different anatomical tendons
[17] or with tissues from identical anatomical tendons but
from different subjects [18]. Since considerable micro-
scopic structure differences have been demonstrated in
anatomically different tendons [19], this limits the conclu-
sions that may be drawn from these studies. Taking the
aforementioned limitations into account, current data con-
cerning local biochemical differences within tendinopathic
tendons, seem to indicate that an altered expression of col-
lagen [20], proteoglycans [21] and matrix metalloprotei-
nases [16,22] exists in tendinopathic tendons. In addition
the level of cytokines [23] VEGF and fibronectin [24] has
been shown to be significantly different in the tendino-
pathic area. However analyses of local biochemical differ-
ences together with morphological differences are lacking.

The aim of the present study was to elucidate if any
local structural differences are present in tendinopathic
areas of human Achilles tendons compared to healthy
areas in the same tendon. Furthermore, we wanted to
investigate which proteoglycans, growth factors and
cytokines that were involved in the local structural dif-
ferences observed.

We hypothesize that several markers such as collagen 3
would be locally up regulated indicating formation of scar
tissue with in the tendon [25] and higher concentrations
of MMP-2 and MMP-9 indicating an enhanced degrada-
tion of collagen structures in the tendinopathic area (t-
area) when compared with the healthy area (h-area) of the
same tendon. Furthermore it is hypothesized that certain
proteoglycans would have altered expression in the two
tendon regions, e.g. an increased expression of decorin
which might cause the collagen turnover to be increased
also in chronic tendinopathic tendons. Additionally we
hypothesize that growth factors like fibroblast growth
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factor (bFGF) are decreased causing a reduced healing
capacity in the injured area of the Achilles tendons.

Methods

Design

Thirty patients with chronic Achilles tendon pain were
included in this study approved by the local Ethical Com-
mittee of the Capital Region Copenhagen (H-1-2009-114)
and in compliance with the Helsinki Declaration. Addi-
tionally the study was registered at Current Controlled
Trials (ISRCTN20896880). Due to limitations in the
amount of tissue gained from the tendon biopsies
patients were randomly assigned to either a Structural
study (# = 14) or a Biochemical study (n = 16) by the
envelope method. All subjects were recreational athletes
or workers with a long-term history of chronic Achilles
tendon pain (> 1/2 year) (Table 4) and conventional con-
servative treatments (eccentric rehabilitation, NSAIDs
and corticosteroid injections) had been tried in all indivi-
duals with no effect. Intake of NSAID or corticosteroid
injection was not allowed 6 months prior to inclusion in
the present study. All subjects were recruited from the
Rheumatology Department, Silkeborg Hospital, Den-
mark, and the biopsies from the Achilles tendons were
taken as part of a standard procedure in order to examine
for deposits of cholesterol, uric acid, and amyloid in the
injured Achilles tendons.

Biopsy procedure

The subjects were locally anesthetized, in the peritendi-
nous space from both the medial and lateral side of the
tendon with injections of 2 x 10 ml 1% Lidocain, using
ultrasound guidance. Biopsies were taken with a semi-
automatic biopsy needle (14 GA, 9 cm; Angiotech) also
using ultrasound (US) guidance. An initial tendon biopsy
was taken in the maximally sick area evaluated using US
(defined as the area with maximal increased tendon thick-
ness, neovascularisation, hypoeccogenicity). This area was
usually 3-5 cm above the attachment of the Achilles ten-
don to the calcanaeus bone. A second biopsy was taken
from the same tendon 4 cm proximal to the first biopsy in
a region of the tendon tissue that was deemed normal
using US.

Biopsy samples intended for analysis using Transmission
Electron Microscopy were immersed in 2% glutaraldehyde
in 0.05 M sodium buffer (pH 7.2), and the samples for
gene expression were snap-frozen and stored at -80°C
until analysis.

Transmission electron microscopy of tendon biopsies

Fourteen tendon biopsy pairs were cut into small pieces
and were immersion-fixed in 2% glutaraldehyde for
24 hours. Following three rinses in 0.15 M sodium
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phosphate buffer (pH 7.2) the specimens were post-fixed
in 1% OsOy4 in 0.12 M sodium cacodylic buffer for
2 hours. The specimens were dehydrated in a graded series
of ethanol (70%, 96% and 100%), transferred to propylene
oxide and embedded in Epon (VWR Bie&Berntsen) in
three steps according to standard procedures. For each
biopsy one ultra thin section was cut approximately per-
pendicular to the length axis of the tendon with a Reich-
ert-Jung ultracut E microtome. The section was collected
on a one-hole copper grid with a Formvar supporting
membrane and stained with uranyl acetate and lead
citrate. The sections were examined using a Phillips CM
100 transmission electron microscope operated at an
accelerating voltage of 80 kV. Digital images were obtained
with a MegaView II camera and an analysis software pack-
age. From each ultra thin section the intercellular tissue
was examined by taking a simple, random sample of ten
digitized TEM images of the intercellular tissue. The cellu-
lar component of the tendon was examined in eleven
biopsy pairs by taking 6 times 6 images in three randomly
positioned regions of the section. The 6 times 6 images
were spliced into one image using multiple image align-
ment (MIA) tools, so for each examined biopsy a total of
three MIA images were obtained.

Stereology

The Stereological analyses of the images were carried out
on a computer monitor onto which the digitized EM
image was merged with a graphic representation of the
stereological test systems for just 12 of the 14 biopsy
pairs (2 biopsies was unfortunately not useable for
stereology analyses) (C.A.S.T.-grid software, The Interna-
tional Stereology Center at Olympus). The intercellular
tissue was analyzed at a final magnification of 210.000 in
the ten ordinary TEM images. The volume fraction (Vv)
of collagen fibrils per intercellular tissue volume was esti-
mated with the point counting technique as the number
of points hitting collagen fibres divided by the number of
points hitting the intercellular tissue (including collagen
fibrils) using a point grid of 36 points. The number of
collagen fibrils per cross sectional area of intercellular tis-
sue (NA) was counted in 16 uniformly positioned,
unbiased counting frames, each with an area of 0.0426
mm? (42.6 um?), and the individual diameters (d) of the
sampled collagen fibrils were measured as the largest dia-
meter perpendicular to the longest axis (i.e. the length of
the minor axis of the ellipse) using the “measure-length”
feature of the CAST-grid system. The unbiased counting
frame ensures that all profiles, regardless of shape, size or
orientation, have an equal probability of being sampled
within area probe. The MIA images were analyzed at a
final magnification of 115,000. The point counting tech-
nique, using a point grid with approximately 1000 points,
estimated the volume fractions of the cellular component
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of the tendon tissue. The estimated parameters were: the
volume fraction of cells within the tendon, the volume
fraction of the nucleus within the cell, and the volume
fraction of cytoplasm within the cell. A single experi-
enced investigator performed all stereological analyses in
a blinded fashion. The investigator was blinded for all
subject characteristics, and whether the sample was
obtained from the tendinopathic or the healthy region of
the tendon.

RNA extraction and real time-PCR analysis

Total RNA isolation: Total RNA was extracted from fro-
zen tendon samples from 16 subjects (sample weight:
mean 23.2 + 6.4 mg) by using 1 ml of TRI Reagent (Mole-
cular Research Centre, Cincinnati, OH) 5 steel beads (2.3
mm) and 4 silica beads (1.0 mm Silicon Carbide Beads
(454 grams) BioSpec Products Inc.). Glycogen was added
(120 pg per ml of TriReagent) to the tendon samples to
improve RNA precipitation.

Extracted RNA was precipitated from the aqueous phase
with isopropanol and was washed with ethanol [75%],
dried and suspended in 10 pl of nuclease-free water. The
RNA concentration was determined using a RiboGreen
RNA Quantitation kit 200-2000 Assays, Molecular Probes
USA. RNA quality was determined on the basis of a RNA
6000 nano Chip assay kit, Agilent Technologies, Germany.
The RNA samples were stored frozen at -20°C until subse-
quent use in real-time RT-PCR procedures.

c¢DNA synthesis: 100 ng RNA was reverse transcribed
for each tendon sample in a total volume of 20 yl by using
the QiagenOmniscript RT Kit at 37°C for 1 hour followed
by 70°C for 15 minutes. The resulting cDNA was diluted
twenty times in dilution buffer (10 mMTris EDTA buffer:
Sigma Germany) + Salmon Testes DNA (1 ng/ul; Sigma
Germany), and samples were stored at -20°C until used in
the PCR reactions for specific mRNA analysis.

Polymerase Chain Reaction: The Real-time PCR-method
using Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) and 60S acidic ribosomal protein PO (RPLPO) as
reference genes to study specific mRNA’s of interest was
applied. The primers were purchased from MWG Biotech.
For each target cDNA the PCR reactions were carried out
under identical conditions by using 5 pl diluted cDNA in a
total volume of 25 plQuantiTect SYBR Green PCR Mix
(Qiagen) and 100 nM of each primer (Table 2). The ampli-
fication was monitored in real-time using a MX3005P
real-time PCR machine (Stratagene, CA). The threshold
cycle (C,) values were related to a standard curve made
with cloned PCR products to determine the relative differ-
ence between the unknown samples, accounting for the
PCR efficiency. The specificity of the PCR reaction was
confirmed by melting curve analysis after amplification.
The real-time PCR conditions were as follows: to denatu-
rate the DNA strands the reaction mix was heated above
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the melting temperature of DNA (95°C) for 10 minutes,
followed by 50 cycles each of 15 seconds at 95°C, followed
by the annealing step where optimal primer hybridization
conditions were obtained by lowering the temperature to
58°C for 30 seconds, and the extension step, where the
reaction mix was heated to 63°C for 90 seconds. Two
housekeeping genes GAPDH and RPLPO were used as
reference genes. The RPLPO gene had been chosen as an
internal control, assuming RPLPO to be constitutively
expressed. To validate this assumption GAPDH mRNA
was measured as another unrelated “constitutive” and nor-
malized with RPLPO, showing no difference between
the healthy and the tendinopathic region of the tendon
(Figure 3).

Statistical analysis

The PCR data were log transformed and a Paired Students
t-test was performed to compare the results from the
healthy area of the tendon with the tendinopathic area of
the tendon, with exception of the results from IL-6, IL-1b,
ki67 and HGF-1. These gene targets could not be detected
in all samples. In these cases Chi” tests were performed.
All PCR data are presented as the geo mean + backtrans-
formed SEM. The collagen fibril data were divided into
area and diameter fractions, and a paired Students ¢-test
was performed to compare each fraction between the
healthy and the tendinopathic area of the tendon. Like-
wise, the volume fraction of cells and the volume fraction
of the nucleus within the cell were compared using a
Paired Student ¢-test comparing the two areas of the ten-
don. A P-value < 0.05 was considered to be significant and
all data despite of the subject characteristics are shown as
Mean + SEM.

Results

Structural composition of the tendon

The density, volume fraction and mean area of the col-
lagen fibrils were measured in biopsies from 14 of the ten-
dinopathy patients (Table 1). The density of collagen
fibrils was found to be significantly higher and the mean
area of the collagen fibrils was significantly smaller in ten-
dinopathic tendon region compared to that of healthy
control region, additionally a trend towards significant dif-
ference was found in volume fraction (Table 1). When
analysing the individual bins in the diameter distribution

Table 1 Tendon fibril characteristics

Sick Tendon Healthy Tendon
Tissue Tissue
Mean sD Mean SD P-value
Density 155,73 48,80 111,09 46,72 0,04
Volume Fraction 0,56 0,08 061 0,08 0,06
Mean Area 296354  1693,29 523915 2298,83 0,02
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of the fibrils, a significantly higher number of fibrils with a
diameter in the lower range (10-40 nm) was found in the
tendinopathic area compared to the healthy area (diameter
10-20 nm: Tendinopathic area: 32 + 7 fibrils/um?® Healthy
area 13 + 4 fibrils/pmz; diameter: 20-30 nm: Tendino-
pathic area: 68 + 10 fibrils/um? Healthy area: 26 +
4 fibrils/pm?; diameter 30-40 nm: Tendinopathic area:
74 + 10 fibrils/um? Healthy area: 42 + 5 fibrils/um?; see
Figure 1). In addition a significantly higher volume fraction
of cells was observed in the tendinopathic area of the ten-
don (Figure 2). The volume fraction of the cytoplasm
within the cell was found to be identical in the two areas
(Figure 2) implying an increased number of cells in the
tendinopathic area.

Gene expression analysis

The gene expression of 24 genes was analyzed in the
biopsies of 16 tendinopathy patients (Table 2). As men-
tioned in the methods section, GAPDH mRNA served
as a normalization factor for the genes of interest, and
RPLPO mRNA was used to validate the stability of the
expression of GAPDH mRNA. Specific gene targets
were selected covering the areas of: Extracellular matrix
(ECM) components, degradation components, Growth
factors, inflammatory markers and fibrillogenesis.

Extracellular matrix components: The expression of sev-
eral structural components (collagen 1 and collagen 3)
together with mRNA of fibronectin, tenascin-c and fibro-
modulin was found to be significantly up regulated in the
t-area (Figure 3). Versican was found to be unchanged and
decorin tended to be decreased in the t-area compared to
that of the h-area of the Achilles tendon (Figure 3).

Degradation factors: Expression of MMP-2, MMP-9 and
TIMP-2 was significantly increased in the t-areas com-
pared to that of the h-areas with no difference in expres-
sion of TIMP-1 (Figure 3).

Growth factors: A significant up-regulation of TGF-$1
expression was observed in the t-area compared to that of
the h-area, whereas bFGF and cmet expression in the
same area was significantly decreased. No differences were
observed in the expression of CTGF, VEGF-A1 and IGF-1
(Figure 4). The expression of HGF-1 could not be detected
in all samples but no significant differences were found
between the two regions of the tendon (Table 3).

Inflammatory markers: Data on IL-6, IL-1b and ki67
could not be detected in all samples and no differences
were observed when the two regions were compared (chi
squared test). Ki67 showed a significant decrease in
expression in the tendinopathic areas. No expression
could be detected of COX-2 and TNF-a in any of the
samples (results not shown). COX-1, IL-1R and CCL2 was
detected in all samples, but there was no significant differ-
ence between the t-area and the h-area of the tendon (Fig-
ure 4). Fibrillogenesis: There were no differences in
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Figure 1 Fibril diameter distribution. Fibril diameter of the tendinopathic and the healthy area of the same tendon divided into fractions.
Error bars represent SEM (P < 0.05).
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expression of scleraxis, tenomodulin and Lysyloxidase
(LOX) between the two areas (Figure 5)

Discussion

The major finding of the present study is that tendino-
pathy causes focal biochemical and morphological differ-
ences in the human Achilles tendon. The data obtained
using TEM indicate that the structural composition of
the t-area has a significantly increase in the number of
smaller collagen fibrils compared to the h-area of the
same tendon. This supports our hypothesis that loca-
lized structural differences are present in tendinopathic
Achilles tendons, potentially as a result of an increased
turnover of the tissue in an attempt to heal potentially
injured tissue. This fits with previous findings where a
site-specific loss of larger collagen fibrils and an increase
of fibrils with a small diameter was observed in Achilles
tendons after tendon rupture [26]. However the present
findings differ somewhat from the results observed in
another study from our laboratory [27], in which a

significantly larger fibril area and a lower collagen fibril
density was observed in patellar tendinopathy [27]. This
discrepancy might partly be explained by the fact of the
patella tendon functions more like a ligament (ligament
patella) with the primary role of ensuring a fixed dis-
tance between the patella apex and the insertion of the
tendon on to the tibia bone, in contrast to the Achilles
tendon which functions more like a spring, providing a
means of shock absorption via the connective tissue,
during periods of muscle contraction and loading [28].
Since the function of the patellar and the Achilles tendon
differ, it is likely that the structure of the tendons e.g. the
cross-linking and length of fibrils etc. of the two tendons
reflects this difference. A further explanation might be
that the healthy tissue was taken from the same tendon in
the present study, while Kongsgaard et al. [27] used con-
trol tissue taken from another tendon of healthy control
subjects. The present design has as all study designs
advantages and limitations. The advantage is that this
design enables to investigate local differences in the
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Figure 2 Volume fraction of cells and cytoplasm within the cells. Error bars represent SEM. (P < 0.05).

tendon, the limitation is that no control tissue is available
from tendons that never had any symptoms. Changes that
occur in the whole tendon can therefore be overlooked. A
previous study has shown that histological changes in the
tendon were not only present at the site of rupture but
also in the macroscopical normal part of the tendon, indi-
cating that local alterations of the tissue might not neces-
sarily be local [29]. Whether tendinopathy shows the same
pattern is unclear and needs further investigation. How-
ever we believe that the present local differences between
the t-area and the h-area are strong enough to justify the
conclusions of the present study. To investigate if the
increased number of small collagen fibrils could be due to
genesis of collagen fibrils or degradation of previously
much larger fibrils, the gene expression of scleraxis and

tenomodulin was analysed. Both gene targets have pre-
viously been associated with tendon formation and devel-
opment [30,31]. The absent difference of the expression of
scleraxis and tenomodulin suggests that no fibrillogenesis
took place in the t-area at this very late stage in the disease
(Figure 5). Furthermore a similar expression of Lysyl oxi-
dase (LOX) in both regions of the tendon indicates that
the tissue does not compensate for the localized structural
changes by initiating cross-links to maintain the mechani-
cal properties of the tendon. Previously findings showed
that training increases the expression of LOX in healthy
tendon tissue in rats [32]. The present data suggest that
this adaptation does not take place in t-area of the tendon.
Several abnormalities of the tendon structure have been
investigated with histopathological analysis including fibre
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mRNA Sense Primer Antisense Primer
Collagen 1 GGCAACAGCCGCTTCACCTAC GCGGGAGGACTTGGTGGTTTT
Collagen 3 CACGGAAACACTGGTGGACAGATT ATGCCAGCTGCACATCAAGGAC
Fibronectin TTTGCTCCTGCACATGCTTT TAGTGCCTTCGGGACTGGGTTC
Tenascin C CAACCATCACTGCCAAGTTCACAA GGGGGTCGCCAGGTAAGGAG
Fibromodulin CAGTCAACACCAACCTGGAGAACC TGCAGAAGCTGCTGATGGAGAA
Versican AGTCAGTGGAAGGCACGGCAATCT CCGTTAAGGCACGGGTTCATTT
Decorin GGTGGGCTGGCAGAGCATAAGT TGTCCAGGTGGGCAGAAGTCA
MMP-2 CCGCCTTTAACTGGAGCAAAAACA TTGGGGAAGCCAGGATCCATTT
MMP-9 AGCGAGGTGGACCGGATGTT AGAAGCGGTCCTGGCAGAAATAG
TIMP-1 CGGGGCTTCACCAAGACCTACA TGGTCCGTCCACAAGCAATGA
TIMP-2 CTCGCTGGACGTTGGAGGAAAG GTGTCCCAGGGCACGATGAAGT
CTGF TGCGAAGCTGACCTGGAAGAGA GCCGTCGGTACATACTCCACAGAA
bFGF TGACGGGGTCCGGGAGAAGA ATAGCCAGGTAACGGTTAGCACACAC
HGF TGAAATATGTGCTGGGGCTGAAA ACAAACAAGTGGGCCACCATAATCC
cMet AACCCGAATACTGCCCAGACCC TGATATCCGGGACACCAGTTCAG
VEGFA-1 ATGACGAGGGCCTGGAGTGTGT CTCCTATGTGCTGGCCTTGGTG
IGF-1 GACATGCCCAAGACCCAGAAGGA CGGTGGCATGTCACTCTTCACTC
TGFb-1 GAGGTCACCCGCGTGCTAATG CACGGGTTCAGGTACCGCTTCT
Cox-1 GGTTTGGCATGAAACCCTACACCT CCTCCAACTCTGCTGCCATCT
IL-1R GGAAGGGATGACTACGTTGGGGA CCAGCCAGCTGAAGCCTGATGTT
IL-1b TCCAGGGACAGGATATGGAGCA AGGCCCAAGGCCACAGGTATTT
K67 CGGAAGAGCTGAACAGCAACGA GCGTCTGGAGCGCAGGGATA
CcCL GCCCTTCTGTGCCTGCTGCT GCAGGTGACTGGGGCATTGATT
IL-6 GAGGCACTGGCAGAAAACAACC CCTCAAACTCCAAAAGACCAGTGATG
TNF-a TTCCCCAGGGACCTCTCTCTAATC GAGGGTTTGCTACAACATGGGCTAC
RPLPO GGAAACTCTGCATTCTCGCTTCCT CCAGGACTCGTTTGTACCCGTTG
GAPDH CCTCCTGCACCACCAACTGCTT GAGGGGCCATCCACAGTCTTCT

structure, fibre arrangement, nuclear rounding and cellu-
larity [15]. In the present study a significant increased
volume fraction of cells was observed in the tendinopathic
area of the tendon using TEM. This is in line with pre-
vious animal studies of Soslowsky and colleagues [33-35],
where rats ran with a velocity of 17 m/minute, 5 days/
week, 1 hour/day, either uphill or downhill for a period of
between 2-16 weeks. In such experiments, a decreased col-
lagen fibre organization and increased numbers of cell
nuclei were observed [36,37]. The present TEM analysis
did unfortunately not allow for distinguishing between the
cell types that were counted, and thus it was not possible
to exclude that other cell types than just fibroblasts might
have migrated into the t-area of the tendon. The signifi-
cantly higher mRNA expression of both collagen I and
collagen III in the t-area shows a higher collagen synthesis
of the tendon. At the same time indicates the higher
expression of MMP-2 and MMP-9 in the t-area an
increased collagen matrix degradation. Together these
findings display a higher collagen turnover in the t-area of

the tendon. It has previously been shown that normal ten-
don tissue express matrix metalloproteinases and that a
homeostatic turnover is necessary for tendon regeneration
and maintenance [16]. A increased collagen turnover is
usually associated with adaptation to exercise [2] or heal-
ing of the tendon [38]. It is still puzzling why the increased
collagen turnover in the tendons of chronic patients like
the present has not resulted in a decrease in symptoms or
a healing of the tissue (symptoms range: 0.5-10 years
Table 4). However these data are confirmed in other stu-
dies also showing increased collagen turnover in tendino-
pathic tendons [22,24] and in tendon ruptures [39].
Alterations in proteoglycans have previously been asso-
ciated with tendon pathology [40,41]. Proteoglycans and
glycoproteins are essential for the maintenance of homeos-
tasis of the ECM of the tendon and achieve this by regulat-
ing the collagen fibril assembly [42]. The upregulation of
tenascin-C, and fibronectin is consistent with earlier find-
ings [24,43]. The observed unchanged levels of versican
contrasts earlier findings, where a significant down
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equals 1. Error bars represent SEM. (P < 0.05).

regulation of versican was observed in both tendinopathic ~ patients had a very long history of tendon pain (range: 0.5-
and ruptured tendon tissue [40]. This discrepancy might 10 years). Thus the current biochemical situation in the
lie in the medical history of the patients. The present tissue of these patients may have changed over time. The
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Figure 4 Tendon healing. Gene expressions of Growth factors and different inflammatory markers, shown as a relative ratio between the
tendinopathic and the healthy region of the tendon. The healthy region equals 1. Error bars represent SEM. (P < 0.05).
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observed tendency to a decrease of decorin expression in
the t-area of the tendon was contrary to our hypothesis. It
has been previously shown that a down-regulation of dec-
orin using anti-sense decorin injections improved ligament
healing in rabbits [44]. Whether the present finding of a

depressed decorin is part of the healing response of the
tendons and thus beneficial for the patients is unclear.
Additionally the increased expression of fibromodulin in
the t-area may partly explain the observation of many thin
collagen fibrils since fibromodulin participates in the
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Table 3 Inflammatory markers

Healthy Tendinopathy Chi test
(detected/not detected) (detected/not detected)
IL-6 9/7 10/6 0.7
-1 4/12 6/10 04
ki67 10/6 8/8 0.5
HGF-1 10/6 7/9 03
total 16 16

matrix assembly leading to a delayed fibril formation and
formation of thinner fibrils [45,46]. Treatment with injec-
tions of growth factors for tendon injuries has received
much attention in recent years. Growth factors are poly-
peptide molecules that are decisive regulation of cell meta-
bolism and cell proliferation and are associated with
tendon healing [47-51]. Studies using local administration
of bFGF [52,53], HGF [54,55] and IGF [56] have all shown
beneficial effects in the healing process of tendon injuries,
but not all injuries were tendinopathies though. Exogen-
ous injections of bFGF in human patellar tendons have
been shown to increase wound healing both in vitro and
in vivo in patellar tendon models after surgery [52,53], and
likewise, collagen type III and cell proliferation was
increased after exogenous bFGF injections in patellar ten-
dons after surgery in vivo [53]. Recently, our group
showed that the cytokine IL-6 could act as a growth factor
in tendon tissue [57]. Moreover, local injections of rhIL-6
have been shown to increase collagen synthesis in humans
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after one hour of exercise in the form of running, in
healthy young men [57]. However, the issue as to whether
local injections of IL-6 in tendinopathy patients may be
beneficial to the healing process of a damaged tendon is
still unknown. The pain that tendinopathy patients experi-
ence has previously among other been related to Sub-
stance-P, a neuro-peptide with various biological functions
including pain transmission [58,59]. Since no difference in
Substance P expression were observed between the two
areas, the present data might indicate that other factors
than substance P can be responsible for the pain in tendi-
nopathic tendons. It is however also possible that the
expression of Substance-P is increased in the whole ten-
don and therefore overlooked due to the previously men-
tioned limitations of the present design. Although the role
of inflammation in tendinopathy is one that is often dis-
cussed, it has long been known that tendinopathy is pri-
marily a degenerative condition, in which inflammatory
cells in or around the lesion are absent. All markers of
inflammation that were measured showed no upregulated
expression in the t-area of the tendon (Table 3). This
underlines that long-term tendinopathy is not primarily an
inflammatory process, but rather an ongoing degenerative
process. Although inflammation is absent in tendinopathy
at this late stage, it does not rule out that an inflammation
insult was present at the initiation of the tendinopathic
process [60,61]. In fact, various inflammatory mediators
like TNF-alpha, IL-6, IL-15, IL-18 have been shown to
play a role especially in wound healing after injury [62]

(Log 2)
D
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[

| |
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Tenonllodulin

Figure 5 Fibrillogenesis. Gene expressions of markers for fibrillogenesis, shown as a relative ratio between the tendinopathic and the healthy
region of the tendon. The healthy region equals 1. Error bars represent SEM (P < 0.05).
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Table 4 Subjects characteristics
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Age [yr]  Gender M/F  Weight [kg] Height [cm] BMI [kg/m?] History of symptoms [Y] (range)
Structural study (n = 14) 48 + 12 11/3 86+ 17 182 + 8 26 +4 3+25
(0.5-10 years)
Biochemical study (n = 16) 49 £ 10 10/6 85+ 18 175 £ 10 28 5 2+1

(0.5-3 years)

Data shown as Mean + SD

and in early stages of tendinopathy [23,63]. However, since
inflammation can not be detected in later stages of chronic
tendinopathy, the present data may indicate that the use of
anti-inflammatory treatments e.g. NSAIDs are not relevant
for chronic tendinopathy patients.

Conclusion

The present study examined the differences in structural
proteins, cellular volume densities and expression levels
of various genes involved in regulation of matrix proteins
in clinically and ultrasonographiclytendinopathic regions
of the human Achilles tendon and healthy regions within
the same Achilles tendons. The main findings were dif-
ferences in the composition of collagen structures with
the tendinopathic region containing significantly higher
number of small size fibrils (diameter 10-40 nm) com-
pared to the healthy region of the tendon. In addition,
the tendinopathic region had a significantly higher
volume fraction of cells, compatible with a greater num-
ber of cells per unit volume. Furthermore, expression of
several genes involved in both collagen synthesis and col-
lagen degradation was significantly up-regulated, an
observation that is consistent with an increased local
turnover of collagen tissue in the affected tendinopathic
area of the tendon. Gene expression was also influenced
by the disease as several factors involved in wound heal-
ing were expressed at a lower number in the tendino-
pathic area. Lastly no sign of increased inflammation was
found in the diseased region. Taken together these data
indicate that local morphological and biochemical differ-
ences are present within the tendon during Achilles ten-
dinopathy. These findings may have implications in the
choice of treatment for these patients.
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