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Abstract
Background: Polymethyl-methacrylate (PMMA) beads releasing antibiotics are used extensively
to treat osteomyelitis, but require surgical removal afterwards because they do not degrade.

Methods: As an alternative option, this report compares the in vitro gentamicin release profile
from clinically used, biodegradable carrier-materials: six injectable cements and six granule-types.
Cement cylinders and coated granules containing 3% gentamicin were submerged in dH2O and
placed in a 48-sample parallel drug-release system. At regular intervals (30, 90, 180 min. and then
every 24 h, for 21 days), the release fluid was exchanged and the gentamicin concentration was
measured. The activity of released gentamicin was tested on Staphylococcus aureus.

Results: All combinations showed initial burst-release of active gentamicin, two cements had
continuous-release (17 days). The relative release of all cements (36–85%) and granules (30–62%)
was higher than previously reported for injectable PMMA-cements (up to 17%) and comparable to
other biodegradable carriers. From the cements residual gentamicin could be extracted, whereas
the granules released all gentamicin that had adhered to the surface.

Conclusion: The high release achieved shows great promise for clinical application of these
biodegradable drug-carriers. Using the appropriate combination, the required release profile (burst
or sustained) may be achieved.

Background
Osteomyelitis is a refractory condition, potentially lead-
ing to amputation or even death; treatment often requires
multiple surgical interventions and local or systemic anti-
biotic therapy [1]. It predominantly affects both extremes
of age; acute hematogenous infection occurs mainly in

children and chronic osteomyelitis in the elderly [2].
Chronic osteomyelitis often requires surgical debride-
ment and local antibiotic treatment. Disadvantages of cur-
rently used non-biodegradable polymethyl-methacrylate
(PMMA) carriers include low antibiotic release by
cements and the requirement of surgical removal in the
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case of PMMA-beads [3]. Moreover, resistant bacteria may
appear on the carrier-surface during later stages of low-
level antibiotic release [4]. In contrast, biodegradable
antibiotic carriers may result in high release and obviate
the need for removal; they are gradually replaced by
ingrowing tissue [5,6]. Furthermore, secondary release of
the antibiotic may occur during the degradation phase of
the carrier, this could increase the antimicrobial efficacy
compared to non-biodegradable carriers [7].

To our knowledge, this is the first study to describe in vitro
antibiotic-release from twelve clinically available biode-
gradable carriers. The release profile of the drug-carrier
combination determines the clinical efficacy for an
important part. For prevention of infection, a high initial
burst-release has been suggested, whereas treatment of
chronic infection may require a sustained antibiotic-con-
centration [3,8]. The materials used, six injectable
cements and six pre-shaped granule types, are all calcium-
phosphate based bone-defect fillers, mainly for non-
weight-bearing applications. The chemical composition
of these materials is highly similar to natural bone; all
consist of calcium-phosphate ceramics and are slowly
replaced by ingrowing bone [9].

Methods
Sample production
Gentamicin-sulphate (GS) loaded cements were produced
by mixing cement powder and liquid containing 30 mg
GS (Biomet Merck BioMaterials, Darmstadt, Germany)
per gram powder (liquid-powder-ratio according to the
manufacturer). Cylinders hardened overnight (37°C) in 6
× 5 mm molds. The cements were: Biobon (Biomet Merck
BioMaterials), Calcibon (Biomet Merck BioMaterials),
Biofil, (DePuy CMW, Blackpool, UK), Bonesource
(Stryker-Leibinger, Freiburg, Germany), Chronos Inject,
(Synthes, Bettlach, Switzerland) and Norian SRS (Syn-
thes).

One gram of granules was immersed in 2.0 mL of dH2O
containing 30 mg GS per gram carrier-material and freeze-
dried. After removal of the granules, the residual GS in the
vessel was measured. The granules were: Allogran-R
(Orthos, Bristol, UK), Bicalphos (Medtronic, Memphis,
TN, USA), Biosorb (Science for Biomaterials, Lourdes,
France), Bonesave (Stryker-Leibinger), Cerasorb
(Curasan, Kleinostheim, Germany) and Vitoss (Orthovita
Malvern, PA, USA).

Release experiment
As in previous experiments [10,11], specimens were
immersed in 500 µL dH2O, in sealed polystyrene 48-well
plates (Costar, High Wycombe, UK) at room temperature
on a shaking device (180 rpm). The water was replaced
regularly: 30, 90 and 180 minutes on day 1, and then 24

hourly for 21 days (cements) or five days (granules) and
stored at -20°C. Additional time points were used in the
first 24 hours in order to detect a possible burst-release
pattern. Immediately after the sample-production (con-
trol) and after the release experiment (residual) three
specimens per group were finely ground and suspended in
4 mL dH2O containing 1 M NaCl to determine the extract-
able amounts of GS. The cumulative release on day 21
(cements) or five (granules) was compared with Student's
t-test (two-tailed, p < 0.05).

Gentamicin determination
Gentamicin concentrations were measured using an
AxSym System (Abbott Laboratories, Irving, TX, USA),
which allows accurate measurement of 0.30 to 30.00 µg/
mL. Aliquots were therefore diluted in phosphate buff-
ered saline (PBS); the values reported were corrected for
the dilution factor. All measurements were calculated as
GS quantities for transparent comparison to the amount
of powder added during production. The accuracy was cal-
culated as 2.9 % (mean error of true value) and the preci-
sion as 1.6% (coefficient of variance), it was sensitive to
0.27 µg/mL with 95% confidence [7]. The values represent
the mean ± S.D. from three experiments, totalling at least

Production mold and CaP cylinders 6x5mm (A); the cylinders are slightly conical to facilitate extrusionFigure 1
Production mold and CaP cylinders 6x5mm (A); the cylinders 
are slightly conical to facilitate extrusion. The scale bars are 5 
mm
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nine samples per carrier-material. Cements were divided
in high release and low release; the threshold was arbitrarily

set at 20 mg/g or 67% release. Since all granules released
<20 mg/g this division was not made for granules.

Antimicrobial activity
A killing assay was used to ascertain gentamicin activity
was undiminished by possible interaction with the cal-
cium-phosphate. As described earlier [11], samples of 500
µL release-medium (taken after 24 hours) were freeze-
dried and 106 cfu Staphylococcus aureus ATCC 10834 were
added in 100 µL of 1 mM potassium-phosphate-buffer
(pH 8.0) containing 1.0% Brain Heart Infusion. After 60
minutes incubation at 37°C, these were diluted in PBS
and quantitatively cultured. The percentage of killing was
calculated: [1-(cfu in sample/cfu in control)] × 100%,
(>90% was considered active). Sterile cultures were con-
servatively calculated as 99.8% killing, which was the
detection limit of the assay. Samples without GS were
used as controls; samples from the first day were used as
representative samples for the drug-carrier combination
since these all contained sufficient amounts of gen-
tamicin.

Results
The cumulative release varied from 36% to 85%
(cements) and 30% to 62% (granules) of the GS added
during production. High killing percentages (99–100%)
indicated intact antimicrobial activity (Table 1). Figure 1,
2, 3, 4, 5, 6 and 7 show the cement-cylinders, the mold

Table 1: All carriers combined high cumulative release with intact antimicrobial activity, only the cements had residual GS after 
release. The total release is also given as percentage of the 30 mg/g that was added during production. (a)Total release from three high 
release cements (Biofil, Bonesource and Chronos) was significantly higher than from low release cements Biobon and Norian and than low 
release granules Bonesave and Biosorb. (b)The release from Chronos was also higher than from low release cement Calcibon (all p < 
0.05). Only two cements showed continuous release (Biobon and Bonesource for 17 days). For comparison, available gentamicin 
extracted from samples ground immediately after production is shown in the control column. Values are means ± SD of at least three 
experiments in triplicate.

Carrier Gentamicin (mg/g) Killing

cumulative release (%) residual control (%)

Cements

Biobon 14.0 ± 3.6 46.7 2.1 ± 2.1 17.1 ± 0.0 99.8
Biofil 23.2 ± 4.0 77.3a 0.9 ± 0.3 21.3 ± 3.9 99.7

Bonesource 25.3 ± 2.5 84.3a 1.8 ± 2.0 23.4 ± 4.5 99.8
Calcibon 16.1 ± 5.9 53.7 5.8 ± 3.8 21.2 ± 0.5 99.8
Chronos 25.6 ± 3.3 85.3a,b 0.5 ± 0.3 22.0 ± 5.5 99.1
Norian 10.8 ± 3.8 36.0 6.4 ± 0.0 16.9 ± 8.4 99.8

Granules

Allogran 15.2 ± 9.6 50.7 0.0 16.5 ± 10.0 99.8
Bicalphos 13.4 ± 8.2 44.7 0.0 15.3 ± 9.9 99.8
Biosorb 9.6 ± 2.7 32.0 0.0 11.5 ± 6.0 99.8

Bonesave 9.1 ± 5.5 30.3 0.0 10.0 ± 4.6 99.7
Cerasorb 10.8 ± 7.1 36.0 0.0 11.1 ± 7.1 99.8

Vitoss 18.6 ± 8.3 62.0 0.0 18.6 ± 10.1 99.4

Samples of the granule types illustrate the differences in shape and macro-porosityFigure 2
Samples of the granule types illustrate the differences in 
shape and macro-porosity: Allogran
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and the different irregularly porous granule-types. All
cements showed burst-release in the first day, two cements
(Biobon and Bonesource) showed a continuous-release for
17 days. From all cements residual gentamicin could be
extracted, which was highest in Calcibon and Norian
(Table 1).

The high release cements (Chronos, Bonesource and Biofil)
released more GS than low release cements (Norian and
Biobon) and than low release granules Bonesave and Biosorb
(p < 0.05, Table 1). The release from Chronos was also
higher than from low release cement Calcibon (p < 0.05),
the differences between Bonesource, Biofil and Calcibon
were not significant. In Figure 8 the release of GS from
cements is expressed as a fraction of the total cumulative
release. In Figure 9 release results from the granules are
plotted. The initial release, both from cements and from
granules, follows square-root-of-time kinetics.

The granules all had burst-release during the first day,
which was related to the amount of GS that had associated
with the carrier-material during production (Table 1, con-
trol column). The release from the granules showed a
larger variation than from cements, no significant differ-
ences between the different granule types were observed.
The GS that did not associate with the granules during
production was recovered from the vessels in which the
samples had been freeze-dried; no residual GS was
extracted from the granules.

Discussion
A safe release profile would feature a short duration of
antibiotic release after which the release should stop com-
pletely to prevent sub-inhibitory gentamicin concentra-
tions, which could induce resistant bacteria [12]. A

BicalphosFigure 3
Bicalphos

CerasorbFigure 5
Cerasorb

BonesaveFigure 4
Bonesave
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discrete burst after implantation eradicating the contami-
nating bacteria in the surgical site could be sufficient for
prophylactic therapy. This would fit the burst-release seen
in all carrier-materials of the current study. The continu-
ous-release profile for 17 days seen in Biobon and Bone-
source could conform well with treatment of established
osteomyelitis in which a concentration ≥ 8 µg/mL for sev-
eral weeks has been propagated [13,14].

Remarkably, all twelve carriers showed a higher release of
active GS than reported from injectable PMMA cements.
The release in the first seven days was 36–78% for cements
and 30–62% for granules. Based on similar experiments
both Kühn and van de Belt reported up to 17% release
after seven days [14-16] Using the same conditions as the
current study, Faber and coworkers reported 18% release
from small sized PMMA-cement samples [17].

The GS content is a major determinant of cumulative
release. This study used 3.0%, a review of current antibi-
otic containing PMMA cements reports a range of 2.3–
3.8%. [15] Another important factor is the surface to vol-
ume ratio; our study used 6 × 5 mm cylinders (diameter ×
height). Compared to our study, both Kühn and van de
Belt used larger sized samples, which may have influenced
the total release[14,15] The importance of carrier size was
demonstrated in vivo by Walenkamp; small PMMA-beads
established a markedly higher gentamicin release (over
90%) than larger ones. [18] In contrast to biodegradable

materials, PMMA-beads allow staged treatment and
require surgical removal after each treatment episode.

As anticipated, the antimicrobial activity was retained;
gentamicin is a heat-stable aminoglycoside and has been
shown to release intact from several carrier-materials
[6,19,20]. From the cements, not all GS could be extracted,
suggesting incorporation of gentamicin into the cement.
The mechanism could be by interaction of the positively
charged gentamicin-base with the calcium-phosphate
crystal-structure during the setting reaction [11,13]. This
interaction could have been of influence on the continu-
ous release seen in Biobon and Bonesource. Some of the
(non-released) residual GS was not strongly bound to the
cement matrix and could be extracted by grinding the
cement samples and high salt concentrations to decrease
charge dependant binding. This fraction may have been
sequestered in the deeper layers, inaccessible to the release
fluid. In vivo, it could cause prolonged release from the
carrier during biodegradation, when ingrowing cells and
crack formation increase the carrier-surface exposed to
extracellular fluid. Carrier-surface characteristics and
drug-sequestration appear to significantly influence the
release profile; which could be used to tailor the therapeu-
tic effect of drugs [14]. Favourable release properties
should result in consistent safe therapeutic drug concen-
trations. Although all carriers used exist of calcium-phos-
phate salts, the chemical composition of the individual
products differs. This could influence release properties by

VitossFigure 7
Vitoss

BiosorbFigure 6
Biosorb
Page 5 of 8
(page number not for citation purposes)



BMC Musculoskeletal Disorders 2006, 7:18 http://www.biomedcentral.com/1471-2474/7/18
diferences in material characteristics as surface roughness,
wettability and chemical reactivity of the surface [14].

The variation in total release was smaller in cements than
in granules, possibly indicating that the cement mixing
procedure gives a more homogeneous drug-distribution
than drug-adsorption onto the irregular porous granules-
surface. Both the initial burst from the cements and the
complete burst-release from the granules follow square-
root-of-time kinetics (Figures 8 and 9). Such kinetics
would indicate that initial release from these carriers is
predominantly by diffusion [13,21]. This suggests attach-
ment of the drug both to the carrier-surface and to the
internal surface of the pores. During preparation, not all
GS associated with the granules, indicating that the gran-
ules' porosity and surface properties may limit the
amount of GS that will attach.

This in vitro study is limited by the extrapolation of the
results to clinical concentrations in bone and surrounding
tissues. Many different models to analyze drug-release
have been described, all optimized for certain factors that
influence release including: release medium, fluid
exchange volume, flow rate, and interfacial gap [22-24].
In this model testing conditions were rigidly kept constant
for all groups, but not all physiological parameters were
mimicked: clearance of the drug by blood flow, buffered
pH and ionic content, and the high concentration in the
carrier-bone interface were not included in this model
[22]. This experiment used complete exchange of small
volumes of water as the release medium, allowing com-

parison with our earlier experiments that reported dose-
dependent release of antimicrobial agents from PMMA
and biodegradable carriers [10,11]. In animal experi-
ments, we successfully used calcium-phosphate cement
loaded with gentamicin to prevent infection in a well
characterized rabbit model of osteomyelitis. Bone cul-
tures, the gold standard in osteomyelitis detection,
showed a significant reduction in pathogenic bacteria
[25]. This stresses the potential therapeutic options of
such composites [26]. As a technical advantage, the cur-
rent set-up will test several combinations in one experi-
mental run, since it accommodates a large number of
isolated samples.

The strength of in vitro release studies of this kind lies in a
qualitative comparison of different carrier materials,
allowing the identification of the most suitable drug-car-
rier composites. Although recognizing the limitations of
in vitro models, a positive correlation between in vivo and
in vitro results has been reported for gentamicin-contain-
ing biodegradable implants [27,28]. This study presents
several high release carriers. Possible advantages of
cements include high and continuous release and easy
injection into the relevant anatomic site. We have succes-
fully used antibiotic containing cement in small animal
models [26]. On the other hand, the granules completely
released all gentamicin present, markedly decreasing the
risk of inducing antimicrobial resistance.

Prolonged in-hospital systemic antibiotic treatment of
osteomyelitis implies a heavy burden for both patient and
healthcare organisation. The large number of currently
available non-biodegradable antibiotic carriers under-
scores the demand for sound local antibiotic treatment
options. In contrast, only few approved biodegradable
antibiotic delivery devices are currently available. This
emphasizes the clinical potential of biodegradable antibi-

Gentamicin released from biodegradable granules. A burst release pattern was observed in all sample groupsFigure 9
Gentamicin released from biodegradable granules. A burst 
release pattern was observed in all sample groups.

Gentamicin released from biodegradable cementsFigure 8
Gentamicin released from biodegradable cements. The 
cumulative released GS fraction as part of the total release is 
plotted as a function of the square root of time. Initial release 
was linear (R2 > 0.9). Data represent cumulative values from 
a complete fluid exchange experiment.
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otic carriers and the need for comparative studies. By
using materials approved for implantation in bone, the
gap between pre-clinical and clinical studies may perhaps
be narrowed, thus allowing early adaptation and imple-
mentation of these devices.

Conclusion
For patients requiring surgery for bone defects, the burst-
release pattern observed in all carriers, may offer clinical
applications for the prevention of osteomyelitis. The pro-
longed release-profile from two of the cements might be
an effective option in the concept of treating osteomyelitis
[8,29]. Since all carrier-materials are commercially availa-
ble, these results may readily be extended to in vivo studies
to determine the optimal combination for different clini-
cal situations. The presented results support the ongoing
clinical exploration of antibiotic containing biodegrada-
ble drug-delivery systems [5,19,26].
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